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CHAPTER 1. INTRODUCTION

1.1 Motivation and Objectives

Fluidized beds (FB) reactors are widely used in the polymerization industry due to their
superior heat- and mass-transfer characteristics. Nevertheless, problems associated with local
overheating of polymer particles and excessive agglomeration leading to FB reactors defluidiza-
tion still persist and lmit the range of operating temperatures that can be safely achieved in
plant-scale reactors. Many people have been worked on the modeling of FB polymerization
reactors, and quite a few models are available in the open literature, such as the well-mixed
model developed by McAuley, Talbot, and Harris (1994), the constant bubble size model (Choi
and Ray, 1985) and the heterogeneous three phase model (Fernandes and Lona, 2002). Most
these research works focus on the kinetic aspects, but from industrial viewpoint, the behavior
of FB reactors should be modeled by considering the particle and fluid dynamics in the reactor.
Computational fluid dynamics (CFD) is a powerful tool for understanding the effect of fluid
dynamics on chemical reactor pefforniance. For single-phase flows, CFD models for turbu-
lent reacting flows are now well understood and routinely applied to investigate complex flows
with detailed chemistry. For multiphase flows, the state-of-the-art in CFD models is changing
rapidly and it is now possible to predict reasonably well the flow characteristics of gas-solid
FB reactors with mono-dispersed, non-cohesive solids.

Different length scales and phenomena are involved in the polyolefin process. Fig. 1.1
shows that the reactor diameter is on the order of meters, the particles are tens to hundreds
of microns, the sub-fragments are on the order of hundreds of nanometers and the active site
is even smaller, only 1-100 A. At the early stage of polymerization, single particles fragment

into a large number of small sub-particles. The monomers and other species are transported



through the particle boundary layer and by a network of macropores inside the particle, and
diffuse through the polymer phase to the active sites where the polymerization reactions occur.
Simultaneously, the heat produced by the reaction is removed out of the particle in the opposite
direction. Particles can also agglomerate and swarm into a big particle when the particles are
overheated or charged. The particles can also break into small fragments if the temperature
in the bed is too cold. Thus a broad distribution of particle sizes exist in the FB reactors,
and segregation and mixing coexist in the bed due to the mobility of the particles. Therefore,
the detailed mathematical modeling of polymerization FB reactors is very complex and poses

many challenges for us:

e Poly-dispersed polymer particles play an important role in the behavior of the reactor.

| Large particles produced by the polymerization reaction or agglomeration can migrate
to the bottom of the bed for removal. Unreacted particles or small particles produced
from breakage are elutriated with the incoming gas. Local particle size distribution
(PSD) is related with many phenomena, such as, segregation, agglomeration, breakage

and elutriation.

e Heat and mass transfer to the particle surface controls the local particle temperature and

hence the rate of agglomeration and breakage.

o Catalyzed, free-radical polymerization chemistry occurs on the surface of the catalyst

and is strongly influenced by mass and heat transfer to the active catalyst sites.

e All of these phenomena are highly coupled and can have a strong influence on the fluid

dynamics (e.g., defluidization due to particle agglomeration).

To address these challenges, several researchers have investigated on this subject from dif-
ferent aspects. Mckenna, Spitz, and Cokljat (1999) study the heat transfer from catalyst or
polymer particles of different sizes during polymerization in a gas-phase reactor using CFD cal-
culation. Their work shows that the particle shape does not have an overwhelming influence
on convective heat-transfer coefficients. Conduction can make a significant contribution to

heat removal for particles less than 100 um, and particle-particle and particle-wall interaction



1-10m

] Electrostatic/thermal
agelomeration

t Parlicle swarm Catalyst fragments
il f surrounded by polymers

Sub-particle

0m . 1-100A
FB Reactor AN . )
o el o T ~*  Active Site
Mixing, P K 3
segregation ' Molecular
7 10-100um phenomena,
kinetics

Interface mass &
heat transfer

Figure 1.1 Length scales and phenomena involved in pelyolefin processes.

is important in some cases. Maggioris et al. (1998) use CFD to predict the PSD in suspen-
sion polymer reactors, and a two-compartment population balance model was developed for
predicting the nonhomogeneities of droplet size in the reactor. A satisfactory agreement was
obtained between the simulation results and experiment data. Recently, the discrete element
method (DEM) was used to simulate gas-phase olefin polymerization reactors (Kaneko, Shio-
jima, and Horio, 1999). A constant particle size is used during the simulation, the temperature
profile in the FB bed is given, and hot spot formation is observed on the distributor near the
wall of the fluidizing column. It was also found that the degree of mixing can be used as an
effective index to identify and prevent hot spot formation. Later, the agglomerate phenomena
in a FB with fine cobesive particles was studied by Kuwagi and Horio {(2002) using 2D DEM
simulation. High particle pressure and agglomerate growth in the bubble wake region and
breakage of agglomerates in the upper region of bubbles were confirmed. The agglomerate size
obtained by numerical simulation agreed fairly well with the one from the theoretical model.
However, in order to completely describe all the phenomena we mentioned in the context of
CFD, the simultaneous numerical solution of the equations for continuity, momentum, energy

and chemical species is required. In addition, for polydisperse solids a population balance



equation (PBE) is also needed to describe the PSD in the beds. To our knowledge, such work
has not been undertaken, so our objective is to develop a comprehensive model for polydisperse
fluidized bed polymerization reactors and describe all the phenomena in the bed.

The CFD algorithm for simulation of FB polymerization reactors is shown in Fig. 1.2. It
is based on a multi-fluid model, such as MFIX, and combined with two user defined functions
(UDF). As we know, most of today’s CFD calculations for gas-solid flows are carried out
assuming that the solid phase is monodispersed. However, in order to properly model the
evolution of a poljzdisperse solid phase, the PBE must be coupled with other equations. So
the rec;antly formulated direct quadrature method of moments (DQMOM) is implemented in
a multi-fluid CFD code to simulate the dynamic change of particle size in a FB reactor. The
change of particle temperature and mass fraction due to the aggregation and breakage is also
investigated using bivariate population balance equations. For the chemical source terms,
if a simplified two-site copolymerization kinetic scheme is used, in situ adaptive tabulation
(ISAT) or a chemical look-up table can be used to solve efficiently the solid species equations.
The model for heat and mass transfer from/to polymer particle need to be developed for the

multi-fluid CFD model.

1.2 Oautline

This thesis is organized into seven chapters. In Chapter 2, an overview of fluidized bed
polymeriéation reactors is given, and a simplified two-site kinetic mechanism are discussed.
Some basic theories used in our work are given in detail in Chapter 3. First, the governing
equations and other constitutive equations for the multi-fluid model are summarized, and the
kinetic theory for describing the solid stress tensor is discussed. The detailed derivation of
DQMOM for the population balance equation is given as the second section. In this section,
monovariate population balance, bivariate population balance, aggregation and breakage equa-
tion and DOMOM-Multi-Fluid model are described. In the last section of Chapter 3, numerical
methods involved in the multi-fluid model and time-splitting method are presented. Chapter

4 is based on a paper about application of DQMOM to polydisperse gas-solid fluidized beds.
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Figure 1.2 CFD algorithm for simulation of FB polymerization reactors.

Results for a constant aggregation and breakage kernel and a kernel developed from kinetic
theory are shown. The eﬂec;t of the aggregation success factor and the fragment distribution
function are investigated. Chapter 5 shows the work on validation of mixing and segregation
phenomena in gas-solid fluidized beds with a binary mixture or a continuous size distribution.
The simulation results are compared with available experiment data and discrete-particle sim-
ulation. Chapter 6 presents the project with Univation Technologies on CFD simulation of a
Polyethylene pilot-scale FB reactor. The fluid dynamics, mass/heat transfer and particle size
distribution are investigated through CFD simulation and validated with available experimen-

tal data. The conclusions of this study and future work are discussed in Chapter 7.



CHAPTER 2. REVIEW OF FLUIDIZED BED POLYMERIZATION
REACTORS

2.1 Fluidized Bed Polymerization Reactors

Polyolefins, especially polypropylene (PP) and polyethylene (PE), have become the most
popular resins due to the merit of low price, flexibility of molding and ease of disposal or
recycling (Kaneko, Shiojima, and Horio, 1999). The global PP market is one of the fastest
growing industries and the production exceeds 30 million tons in 2000 throughout the world. A
lot of PE products including low density polyethylene (LDPE), linear low density polyethylene
(LLDPE), ethylene-propylene rubber (EPR) and high density polyethylene (HDPE) are widely
used in our daily life and industrial processes. Nowadays, most polyolefin polymerization
processes are executed in a liquid- or gas-phase reactor or a combination of both. Three
major industrial processes for the production of PP and PE are compared in the Table 2.1.
The reactor type, reaction temperature, operation pressure and other reaction parameters are
listed for the three processes: the gas-phase Novolen PP process, the gas- phase Unipol PE
process and liquid-pool Spheripol PP process. Compared to the conventional liquid slurry
reactor, F'B polymerization reactors have more advantages due to such reasons as: capability
of continuous operation and transport of solids in and out of the bed; high heat and mass
transfer rate from gas to particle leading to fast reaction and uniform temperature in the bed;
no need for drying and separation of polymers from solvents; operation at lower pressure and
moderate temperature and better heat removal.

In a catalytic gas-phase olefine polymerization fluidized bed reactor, small catalyst particles
(usually 20-80 pm) are continuously fed into the reactor at a point above the gas distributor,

and react with the incoming monomer gas to produce a broad size distribution of polymer
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particles. At the early stage of polymerization, the catalyst particles fragment into a large
number of small particles (see Fig 2.1), which are quickly encapsulated by the newly-formed
polymer and grow continuously, reaching a typical size of 200-3000 pm. Due to the differences
in the polymer particle sizes, segregation occurs and fully-grown polymer particles migrate
to the bottom where they are removed from the reactor as soon as reasonable conversions
have been achieved. The smaller pre-polymerized particles and fresh catalyst particles tend
to migrate to the upper portions of the reactor and continue to react with monomers. The
recycled and make-up monomer feed streams are continuously fed to the reactor. An external
heat exchange is used to remove the polymerization heat from the recycled gas stream. The
schematic representation of a polymerization fluidized bed reactor unit is shown in Fig. 2.2.
Usually, industrial FB polymerization reactors operate at temperatures of 348-383 K and
pressures of 20-40 bar (Xie, McAuley, Hsu, and Bacon, 1994). The single-pass monomer
conversion in the FB polymerization reactors is low, only 2% to 5 %, whereas the overall
monomer conversion can be as high as 98 % (McAuley, Talbot, and Harris, 1994).

Becanse polymerization is exothermic, the temperature of particles in the fluidized bed
tends to increase and sometimes it will rise above the melting point of the polymer, then
agglomeration occurs and small particles stick together and form lumps in the beds which may
then cause defluidization. On the opposite situation, if the bed is too cold, the particles can
become brittle and may fracture forming small fragments that elutriate with the gas. Thus the
PSD in the bed is related to a couple of phenomena: particle growth, particle agglomeration,

breakage and elutriation.

2.2 Simplified Kinetic Mechanism of Olefin Copolymerization

Hutchinson, Chen, and Ray (1992) proposed a comprehensive multisite kinetic model for
the copolymerization of olefins over heterogeneous Ziegler-Natta (Z-N) catalysts. In here, a
simplified two-site copolymerization scheme (Hatzantonis et al., 2000) is presented to describe
the molecular and compositional developments in a FB polymerization reactor. This scheme

includes a series of elementary reactions, namely, site activation, chain propagation, site deacti-
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Figure 2.1 The simplified picture of a polymer particle with catalyst frag-

ments.

vation, and chain transfer. In general, each site type is associated with different rate constants

for the elementary reactions. Pseudo kinetic rate constants are used in the development of

model. In what follows, the subscript k refers to the different site types, and k =1, 2.

Activation of Active Sites

Potential active sites of type k& undergo a formation reaction with the heterogeneous Z-N

catalysts. This reaction can be described as:

k k& k
Sy + [4] =4 FF,

where ,5'?’; is a potential catalyst active site of type k, and Pf is an catalyst active site of type

k with no attached monomer, or a vacant active site of type k. [A] is a cocatalyst site, usually

it is Aluminum Alkyl.
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Figure 2.2 Schematic representation of a polymerization fluidized bed re-
actor unit

Initiation of Active Site and Propagation

The newly formed sites PY can react with monomers ({M] can be either ethylene or 1-butene

or both, in our work only ethylene is considered.} and form a living polymer chain
k kS ok
By +[M] — Py (2.2)

Plk is a living polymer chain of length one, then the living polymer chains can grow by the
following propagation reactions,

kk
Py + [M] % Py (2.3)

P is a living polymer chain of length n with terminal monomer attached to the active center

of type k.



11

Deactivation Reactions

Active sites may decay spontaneocusly to form dead sites and dead polymer chains
k Mo, k
Pr—=Cj+ D, (2.4)
where Dﬁ is a dead polymer segment of length n which can not undergo any further reaction
and C‘é‘ is deactivated k catalyst active site.

Chain Transfer Reactions

Most dead polymer chains are produced by chain transfer reactions. These reactions occur
with monomer, hydrogen and as well, it can happen spontaneously. Hydrogen is usually added
to industrial FB polymerization reactor to make linear polyethylene and then control the

molecular weight of the produced polymers.

kk
Spontaneous: pk 2, pk o DE, (2.5)
. pk .,
By hydrogen(Hy} : P; + [Hs] —— Py + Dy, (2.6)
LR
By monomer(M) : P* 4 (] =% Pf 4 DE. (2.7)

Note that transfer reactions with monomer produce living polymer chains of length one P,
which has the same reactive characteristics as the sites produced by site initiation, and it also
can propagate to form new polymer chains.

In order to formulate a practical kinetic model, the method of moments is often used to
reduce equations into a low-order system, which can easily be solved (Hatzantonis et al., 2000).
All the kinetic rate constants in the equations can be expressed as, k = kg exp(—FE,/RT), where
ko, Eq, R and T are the pre-exponential factor, activation energy, ideal gas constant and solid

absolute temperature.
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CHAPTER 3. BASIC THEORY AND NUMERICAL METHODS

3.1 Multi-Fluid Continuum Model

In the last few decades considerable progress has been made in the area of hydrodynamic
modelling of gas-solid flow. Generally speaking two different classes of models can be distin-
guished, namely discrete particle (Lagrangian) models and continuum (Eulerian) models.

The Newtonian equations of motion are solved for each individual solid particle by using
discrete particle models, thus the trajectory of every particle can be tracked. The interactions
between the particles can be described by either the soft-sphere model (Tsuji et al., 1993)
or by the hard-sphere model (Hoomans et al., 1996). For the soft-sphere model, contact
forces between the particles are calculated from the overlap between the particles, however,
for the hard-sphere model, the particles are assumed to interact through instantaneous, binary
collisions. The drawbacks of the Lagrangian approach are the larger memory requirements and
the long calculation time, and empirical relations are required to calculate the fluid-particle
interaction unless the continuocus phase is described using direct numerical simulations {(DNS).

Alternately, Eulerian models treat both the gas phase and the solid phases as continu-
ous and fully interpenetrating phases. The equations employed are a generalization of the
Navier-Stokes equations for interacting continua. Owing to the continuum representation of
: the particulate phase, closure relations for the solid stress tensor and the fluid-particle drag
are required to describe the rheology of the solid phase. In most recent years, kinetic theory of
granular flow extended from classical gas kinetic theory has been incorporated (Kuipers et al.,
1992; Gidaspow, 1994; Balzer et al., 1995). Due to the less computation time, the Eulerian
method is still the only feasible approach for performing simulations of an industrial scale

gas-solid flow system and has been widely used for the gas-solid simulations.
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Since there are many types of multiphase flows and different flow regimes exist, general
applicable Eulerian models and methods are not available. To date, there is even still no
agreement on the governing equations. In addition, the constitutive relations for the solids
phase stress tensor and the interphase momentum transfer are still partially empirical (van
Wachem et al., 2001). Two different sets of governing equations for the continuum models
originated from the works of Anderson and Jackson (1967} and Ishii (1975) exist. From the
work of van Wachem et al. (2001), it is shown that Ishii’s (1975} treatment is appropriate
for a dispersed phase consisting of fluid droplets, and that Anderson and Jackson’s (1967)
treatment is appropriate for a dispersed phase consisting of solid particles. Modifications need
to be made for the Ishii’s (1975) equations to describe gas-solid flows (such as Enwald et al.
(1996)’s work). The results from both formulations for the governing equations are similar in
terms of the macroscopic flow behavior, but differ on a local scale such as individual bubbles
or localized solids distribution.

As follows, firstly the modified governing equations from Ishii’s (1975) work are given, and
then several constitutive relations, such as gas-phase equation of sate, fluid-solids and sclids-
solids momentum, mass and heat transfer, and fluid and solids phase stress tensor are listed.

The kinetic theory of granular flow is discussed as last part.

3.1.1 Governing Equations

The multi-fluid continuum model assumes that different phases behave as interpenetrating
continua and the instantaneous variables are averaged over a region that is large compared
with the particle spacing but much smaller than the flow domain. Multiple solid phases are
accounted for describing phenomena such as segregation and elutriation. Each particle phase is
characterized by a unique diameter, density and other properties. A new field variable, phasic
volume fractions, are introduced to track the fraction of the averaging volume occupied by

various phases. By definition, the volume fractions of all of the phases must sum to one:

N
ag+255a=1, (3.1)
a=1
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where N is the total number of solid phase, g4 and 4, are the volume fractions of the gas
and o' solid phases, respectively. The gas phasic volume fraction is also known as the void
fraction.

The continuity equations for the gas and solid phases are

N
e
——-;:g + V - (egpgug) = — Z Mge (3.2)
a=1
and
Oe
___S_gfﬂ + V - {€safsalse) = Mo, (3.3)

where p, and ps, are the gas- and solid-phase densities, uy and u,, are the gas- and solid-phase
velocities, and My, is the mass-transfer rate from the gas to the o'l solid phase due to the
chemical reactions or physical processes, such as evaporation.

The momentum equations for the gas and solid phases are

N
s,
Gi9Pate + V- (ggpgugug) =V - g + Z fgo + €9008 (3.4)
a=1
and
8 N
"6‘% (Esapscxusa) +V- (Esapsausausa) =V 04— fga + Z f,ﬂa + €s0fsal, (3-5)
r6=1h6:l£a

where oy and o, are the gas- and solid-phase stress tensors, fg. is the interaction force
between the gas and the af solid phase, f da is the interaction force or momentum transfer
between the S and ot solid phases, and g is the gravity vector.

The energy balance for the gas phase is written in term of the gas temperature T}, as:

N
T,
EQPQCPQ (th' - Ug - VTQ) =~V qy — Z chx - AHrg + Hwalt (Twall " Tg): (3-6)

a=1
where qg is the gas-phase conductive heat flux, Hy, describes the interphase heat transfer
between gas and ayy solids, and AH,, is the heat of reaction in the gas phase. The last term
accounts for heat loss to the wall, and it will only apply to gas in the boundary layer near the
wall.

The energy balance equations for the solid phases are written in term of the @ty solid phase

temperature T, as:

0T 50

Esapsacpsa (—6t_ + Ugq - VTsa) =-V- Gsa T+ Hga - AH‘r‘sa: (3'7)
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where Qg is the solid-phase conductive heat flux, and AH,,, is the heat of reaction in the
solid-phase. In the formulation of energy balance equations (3.6) and (3.7), heat transfer
between different solid phases and radiative heat transfer are ignored.
The gas and solids phases may contain an arbitrary number of chemical species, Ny and
Nqo. The species equations for the gas phase and solid phases are:
OegpgXgn
at

aesapsaxsan
ot

where Xg, and X, are the mass fractions of gas- and solid-phase species. Ry, and Rgon are

N
+ V. (EngXgnug) = Rgn - Z Mgan)
oa=1 (38)

+ V - (esaPsaXsanWsa) = Rsan + Mgan,

the rate of formation of gas and solid-phase species n. Myqy is the mass-transfer rate from the

gas to o' solid phase for species n.

3.1.2 Constitutive Relations

To proceed further toward solving practical problems of interest, it is necessary to supply
specific constitutive relations to complete the governing equations. This challenging task is
accomplished by using a variety of approaches, ranging from empirical information to kinetic
theory. Many researchers have worked on it and different closure relations based on the different
assumptions are given in the literature and commercial codes. The closure relations used in

this research are listed below.

Gas Phase Equation of State

The gas density p, is related to the temperature 7, and the pressure P, by the idea gas
law:
P, M.,
RT, ’

Pg = (3.9)

where M,, is the average molecular weight of gas and R is the gas constant. For an incom-

pressible phase the density is assumed to be constant.
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Gas-Solids Momentum Transfer

From the studies on the dynamics of a single particle in a fluid, many mechanisms contribute
to the momentum transfer term f,, (Fan and Zhu, 1998). In the present work, only the
buoyancy, caused by the fluid pressure gradient, drag force, caused by the velocity difference
between the gas-solid phase and momentum transfer due to mass transfer between the phases

are accounted for. Thus the gas-solids momentum transfer can be written as:
foo = €50V Py ~ Fya(tg — Usa) — Myal§gattsa + (1 = £ga)ug], (3.10)

where the first term on the right-hand side describes buoyancy, the second term is drag force,

and the last term is momentum transfer due to gas-solid mass transfer My,, and

1 for My, <0,
£ga = (3.11)
0 for My, > 0.

Typically, the gas-solid drag coefficient Fy, is obtained experimentally from pressure drop
measurements in fixed, fluidized, or settling beds. The drag models which are more widely
used are Syamlal-O’Brien model, Wen-Yu model and Gidaspow model. The detail information
on the comparison of these three drag models on the flow patter can be found in Taghipour’s
work (2005).

In Syamlal-O’Brien model (Syamlal, Rogers, and O’Brien, 1993), the gas-solid drag coeffi-

cient derived by Schaeffer (1987} is used:

3 Esafgly
Fga = ZCDmlug — um[, (312)

where dp is the particle diameter and V;, is the terminal velocity correlation for the att solid

phase. A closed formula for V., can be derived from a correlation developed by Garside and

Al-Dibouni (1977):

[A — 0.06Re, + /(0.06Ren)? + 0.12Ren (25 — A) + Aﬂ] , (3.13)

b | =

V;'a:

where

A =gttt (3.14)
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0.8c)% if e, < 0.85,
B= (3.15)

e285  if g > 0.85.

The Reynolds number of the a*" solid phase is given by:

Rey, = Jpalts ~ Usaltg (3.16)

g

The single-sphere drag function has the simple formula proposed by Dalla Valle (1948):

2
Via
= { 0.63 + 4. . A7
Cp ( + 4.8 Rea) (3.17)

In the Wen-Yu drag model, the gas-solid drag coefficient is (Wen and Yu, 1966):

3 £ Egitg — 1 _
Fga= “OD safPg g’ g Sﬂls 2.65

, 3.18
dpa g ( )
and Cp has a different function from Syamlal-O’Brien’s model,
24 0.687 g
- (1+0.15(ggRepa)°°") if egRepy < 1000 )
0.44 if egRepe > 1000

Gidaspow (1994} follows Wen and Yu model for gas volume fraction larger than 0.8, but
apply Ergun equation for gas volume fraction lower than 0.8. The gas-solid drag coefficient for
Gidaspow model is:

1505t | 1 75esesaliounl jp . <08
Fpa= = e (3.20)

3 Esapgle|ug—Use| —2.65 3
1Cp e & ifeg > 0.8

Solids-Solids Momentum Transfer

Compared to gas-solids momentum transfer, much less is known about solids-solids mo-
mentum transfer. Only drag force between solids phases and momentum transfer due to mass
transfer are presented. In the present work, the solids-solids momentum transfer fg, can be

written as:

fﬁoz = _Fﬁa(usﬁ - usa) - Mﬁa[é‘ﬁausa + (1 - éﬁa)usﬁ]: (321)
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where Mp, is the mass transfer from solids phase-f to solid phase-«, and

1 for Mﬁa <0,
£pa = (3.22)
0 for Mg, = 0.

Usually momentum transfer due to mass transfer is small compared to drag force, so it can be
ignored in most simulations.
The drag coefficient Fg, is necessary to correctly predict segregation among particles of

different sizes, and it has an expression of the form

Ci, we
3(1 + 6)(% + fﬁsa )Esapsafsﬁpsﬁ(dpﬁ + dpﬂ)zgoﬁa |u3.5 - usal
27"(Psﬁdgg + Psad}?;a)

Fﬁa = + C1 P*. (3.23)

The first term is obtained from kinetic theory for granular flow, where e and Cfﬁa are the
coeflicient of restitution and coefficient of friction between particles, respectively. Coeflicient
of restitution e accounts for the inelasticity of collisions between particles, and e would be
equal to one for perfectly elastic collisions. However, usually the granular collisions are slightly
inelastic, so it is between zero and one. The radial distribution function go,, describes the
probability of finding two particles in close proximity. This function is equal to one for very
low concentrations of solid particles but it increases due to the increase volume occupied by the
solids particles. This function has many possible definitions and the model derived by Lebowitz
(1964} for a mixture of hard spheres is used:
1 3d,,5d <

0pa = + g(dp;ﬁ+p;pa g di;:\' (3.24)
The second term CiP* represents the “hindrance force” due to enduring contact in a closed
packed system. P* is the total solid stress tensor in plastic regime, it will be explained in the
later section of solid phase stress tensor. C; is a constant. It depends on the segregation rate
between two solid phases, and usually, it can be obtained from experiment data. €g is the

close-packed-bed void fraction or minimum void fraction.
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(Gas Phase Stress tensor
The stress tensor for the gas phase is related to the pressure and viscous stress tensor 74

by
dg = "PgI + Tg- (3.25)

The viscous stress tensor is assumed to have a Newtonian form and can be expressed as:
2
Tg = 2eg,Dg — gegyg']}: (Dg) 1, (3.26)

where p4 is molecular viscosity for gas phase, I is the identity tensor and Dy is the strain rate
tensor for the gas phase, and

D, = = [Vug + (Vuy)T] . (3.27)

b=

Solids Phase Stress tensor

Two different methods have been used to calculate the solids phase stress tensor. In the
earlier studies of the solid stress tensor, the total solid stress tensor is expressed as the sum
of kinetic, collision and frictional tensors. In the dilute part of granular flow, solid particles
randomly fluctuate and translate, this form of viscous dissipation and stress is named kinetic
effect. When the concentration of solid particles increases, in addition to dissipation, solid
particles can collide shortly with other particles and thus enhance dissipation and stress, and
this kind of effect is called collision effect. At very high concentrations (usually more than 50
% in volume), particles start to endure long, sliding and rubbing contacts, which gives rise to a
totally different stress from kinetic and collision stress, and it is called frictional effect. These
three main forms of stress tensors in a granular flow are shown in Fig. 3.1 (Dartevelle, 2003).
Using this method, kinetic and collision stress is calculated from kinetic theory of granular
flow, and the frictional tensor is specified as a function of void fraction that becomes very large
as the void fraction approaches the packed-bed void fraction €4- The actually magnitude of
the term itself is not very important, as long as it prevents the void fraction from becoming

unphysically small.



20

12
. * t+dt
«r \- "*--_

imetic \
Kinetic ™, EY

A J )
. “
ORoglism @

@7 ’ e
O

Figure 3.1 Three main forms of viscous dissipation in a granular flow

In order to avoid the need to specify an arbitrary frictional stress tensor for the solid phase,
Syamlal and O’Brien (1988) suggest to treat the granular media as incompressible fluid at a
certain critical void fraction (or maximum packed-bed void fraction) 5. In such a formulation,
a solid pressure is calculated so as to keep the void fraction from becoming less than the packed-
bed void fraction. This pressure becomes zero when the void fraction becomes greater than
the packed-bed void fraction. Using this method, granular flow is classified into two different
regions: a viscous or rapidly shearing regime, in which stresses arise because of collisional or
translational transfer of momentum (similar to kinetic and collisional regime), and a plastic or
slowly shearing granular flow, in which stresses arise due to Coulomb friction between solids
particle in enduring contact (similar to the frictional regime). Two entirely different approaches
are used to describe the solid stress tensor in these two flow regimes, and they are “switched”

at a critical packing-bed void fraction g,

—PRLI+ 18, ifgg <&,
Osa = (3.28)

—Po I+ 7%, ifeg > ey
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P, is the solid pressure and T, is the viscous stress in the o solids phase. The superscript
p stands for plastic regime and v for viscous regime. The granular stress tensor in the viscous
regime is based on the kinetic theory for granular flow. The granular pressure and stress in
the viscous regime are given by,

Py, = K1a€2,0a, (3.29)

and

Tza - ZI‘LEQDS(! + AEQ’IT (Dsa) I: (330)

where 0, is the grapular temperature for the ot solid phase and the detailed information of
about computing this term will be discussed in Sec. 3.1.3. D, is the strain rate tensor and is
given by:

D, = é [Vuge + Vul). (3.31)

The shear viscosity u?, and second coefficient of viscosity for the o solid phase AY, are

expressed as:

)\‘:& = Kzassu \/ e&, (3-32)
#EO.’ = Kaaasa \/ @a- (3-33)

K1, Koo, K34 are constants and they are derived from kinetic theory for granular flow. The

formulas are:

Kig = 2(1 + €)psaGoaa: (3.34)
€ 2
Koo = 4dpapsa(l + e)‘?g—\/% - §K3a: (3.35)
Apap ni/2 8€50g0n. (1 +€)
K3, = 2220 1+0.4(1 — 1ags, Sl :
3 5 3@ gy L+ 04+ )(3e — Desagona] + S (3.36)

In the plastic regime, the stresses are usually described by theories from the study of soil
mechanics. An arbitrary function that allows a certain amount of compressibility in the solid

phase represents the solid pressure term in the plastic regime:

PP =g, P*, ' (3.37)
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where P* is represented by an empirical power low:
P*=10%(e) — g,)°. (3.38)
The solid stress tensor is calculated from a simpler model proposed by (Schaeffer, 1987):
74 = 208 Dsas (3.39)
where
P*ging

Moo = =
so 2 I2D}

and ¢ is the angle of internal friction, usually it is between 15° or 45°. Izp is the second

(3.40)

invariant of the deviator of the strain rate tensor, and it can be expressed as:

1
Lp = ‘6‘[(-Dscx11 — Dyu22)? + (Dsaga — Dsass)? + (Dsass — Dsa11)?]

+ D25 + Diggs + D2gsy- (3.41)

Gas-Solids Heat Transfer

The heat transfer between the gas and solids is assumed to be a function of the temperature
difference:

Hga = Ysa(Ty — Tsa); (3.42)

where <, is the overall heat-transfer coefficient. The latter can be related to a solid-side

coefficient (7o) and a gas-side coefficient (y,) by

i 1 1
—— B = gp =, (3.43)
Yo Y Ta

The gas-side heat-transfer coefficient is corrected from the coefficient 'yg by adding the influence

of the interphase mass transfer,

o = Cpg Mo
97 (GoaMaal"]) _ 1

(3.44)
and the coefficient fyg is related to the particle Nusselt number (Syamlal et al., 1993):

Nug = (7 — 10eg + 5e2)(1 + 0.7Re32Pri/®) + (1.33 — 2.4e, + 1.262)Rel7Pr1/3,  (3.45)
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by
Yy = 6—162%- (3.46)
The Prandtl number is defined as:
| L= gz;:ﬁ, (3.47}
9

and Reynolds number Re, is defined in Eq. 3.16. The solid-side heat-transfer coefficient 7,

can be estimated as (Yao et al., 2003):

2
_ 27%kpasa

Yo = : (3.48)
¢ 942,

where kg and kp, are the thermal conductivities of the gas and solid phase, respectively.

Gas-Solids Mass Transfer

The mass-transfer rate between gas and solids for species n can be expressed as

Mgcxn = fgan (Xgn - Xsan)a (3.49)

where Kgon is the overall mass-transfer coefficient for species n, which can be related to a
solid-side coefficient (kon) and a gas-side coefficient (xy). Usually the gas-side mass transfer
coefficient can be ignored, only a model for the solid-side coefficient need to be derived. After

performing 2 lumped mass-transfer analysis (Yao et al., 2003), this model can be expressed as

WanEsaPso:
R S B S —— (3.50)
gom o 3 dga
where D, is the diffusivity of species n in the solid phase.
Other Relations
The conductive heat flux for the gas phase is described by Fourier’s Law:
Qg = —£4k,VT,. ‘ (3.51)

For solids phases, the solid-side conductive heat flux is necessary to calculate bed-to-wall heat

coefficients and the conductive heat flux is assumed to have a similar form to that in gas phase:

Usa = —Epaksa V- (3.52)
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For heat of reaction, the partitioning of the heat of reaction between the phases is arbitrary
since the averaging is required to derive the hydrodynamic equations does not contain any
information regarding the gas-solids interface. The actual chemical reactions occur in an
interface between solids and gas phase. However the partitioning of the heat of reaction must
be based on physical argument. For example, in most polymerization reactions, the heat of

reaction is assigned to the solid phase.

3.1.3 Kinetic Theory of Granular Flow

Kinetic theory of granular flow is based on a deep analogy with the classical kinetic theory
of dense gas. Taking the analogy, a granular temperature ©, is defined for each solid phase,
and it is described as the specific kinetic energy of the random fluctuating component of the

particle velocity:

3
Eoa = 504 = 5(C3)

(3.53)

— b =

0o = 3(C5)

3
where Eg,, is the granular fluctuating energy and C, is the random fluctuating component of

the instantaneous velocity c, of the at! solid phase defined by
Co = Ugy + Coq. (3.54)

The symbol ( ) means an ensemble averaging. Notice here, for a solids mixture, we just simply
extend the two phase kinetic theory to multiple granular phases. More general and accurate
kinetic theories for multi-solids phases need to be derived in the future, and recently a couple
of researchers’ work are reported (Goldschmidt, 2001).

In the granular flow or gas-solid flow, the mechanical energy of granular flow is first trans-
formed into random particle motion and then dissipated into internal energy. It is quite
different from the conventional dissipation mechanism. This general principle of dissipation in
the granular kinetic theory is presented in Fig. 3.2. Thus a conservation of energy equation

for this fluctuating kinetic energy is given by

3 a S e
2 [ {erapenBs) + V- (£50p50Oa)Bsa| = Tsa : Vg — V -qo, — 76, + dga- (3.55)

2 ot



25

The first term on the right hand side represents the work done by the surface forces, e.g; the
viscous dissipation and the production of fluctuations by shear. The second term represents the
conduction of the granular temperature, where qg,, is the diffusive flux of granular temperature

and can be defined by a Fourier type law
qe, = —ke,Va; (3.56)

where the diffusion coefficient for granular energy, ke, is described by

_ 15dpapsatsavVTOo

koo = 4141 — 331)

12 16
1+ 200~ B)erat + 501 = Bt (5)

and

nm%ﬂ+@- (3.58)

The third term —vg, is the loss of granular energy due to the inelastic collisions between
particles. It can be described as
3
Yo, = Kint2e©2, (3.59)
where

12(1 — ez)psagoaa

Do/

The last term ¢y, represents the dissipation rate due to the interaction between solids and gas

Kyo = (3.60)

phase. It can be expressed as a function of gas-solid drag coefficient:
f»b@a = _3Fga@a- (3.61)

Inserting all the constitutive relations into the granular temperature equations, for N solids
phases, N coupled partial differential equations (PDEs) need to be solved and it is a very
onerous work. However, this work can be simplified by solving a single PDE that represents
the granular energy equation for a mixture granular temperature ©. The“mixture granular
energy equation” is formed by summing over all particles and after some manipulation it can

be expressed as:

N
310
2 [&Ps@ + V. Ps@us} - Z [Gsa :Vuse — V-qo, —ve, + QSQO‘] : (3'62)

=]
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Figure 3.2 General principle of dissipation in the granular kinetic theory

The mixture granular temperature or averaged granular temperature is defined as:

Q= 2;1(550930:@0:)

N .
Za:l (Esapsa)

Equipartition of granular energy mye©q = mpsOp is assumed in the derivation, where myq is

(3.63)

the mass of the particles that constitute solids phase . Then the granular temperature for

at? solid phase can be obtained by

_ Psa©
= = ]
Psadga Zﬁ:l (Esﬁps,ﬂ)

The implementation of the detailed mixture granular energy equation described by Eq. 3.62

(3.64)
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is still under development. Currently, an algebraic expression for granular temperature ©,,
is calculated by assuming that the granular energy is dissipated locally and neglecting the
convection and diffusion contributions, only keeping the first term (generation term) and the
third term (dissipation term) on the right hand side (ignoring the dissipation rate due to the
interaction between solids phase and gas phase and diffusive flux of granular temperature).

The resulting algebraic granular energy equation becomes:

2
'_KlassaTr (Dscx) + \/KlzaTrz (Dsa) 5305 -+ 4K4cx€sa [K2an2 (Dsa) + 2K3aTr (D%a)]

e, =
* 2€ 56 K4e

(3.65)
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3.2 DQMOM for Population Balance Equation

In order to describe the PSD in a multiphase flow, a PBE needs to be solved along with
coutinuity equation, momentum equation and energy equation. Many different methods exist
for solving the PBE and a lucid description of the mathematical and numerical issues involved
are discussed by Ramakrishna {2000). The most direct method is the discretized population
balance (DPB) approach or classes method (CM}, in which the internal coordinate (e.g, particle
length or volume) is discretized into a finite series of bins. The main disadvantage of this
method is requiring a large number of classes (e.g., 20-30) to get reasonable results, so that
the DPB method is not a feasible approach for CFD calculations. An alternative approach is
Monte-Carlo simulations. This approach is based on the solution of the PBE in terms of its
stochastic equivalent. A population of particles undergoes the “real” physical processes, and
events oceur according to the appropriate probabilities. The work of Smith and Matsoukas
(1998) and Lee and Matsoukas (2000) give more details on this approach. Although this
approach is theoretically applicable for CFD application, especially for Lagrangian-Eulerian
simulations, in order to reduce the statistical error a very large number of particles must be
used. Due to limitations on the computational resources, the full incorporation of Monte-Carlo
methods with CFD codes is at the moment intractable (Madec, Falk, and Plasari, 2001, 2003).

An attractive alternative is represented by the method of moments (MOM) where the PSD
is tracked through its moments by integrating out the internal coordinate. The main advantage
of MOM is that the number of scalars required is very small (i.e., usually 4-6), which makes the
implementation in CFD codes feasible. However, due to the difficulties related with expressing
transport equations in terms of the moments themselves, the method has not been widely
used. This is the so-called closure problem, pointed out first by Hulburt and Katz (1964}, and
recently reviewed by Diemer and Olson (2002). As an alternative, McGraw (1997) developed
the so-called quadrature method of moments (QMOM), which is based on the approximation
of the unclosed terms by using an ad-hoc quadrature formula. The quadrature approximation
(i.e., its abscissas and weights) can be determined from the lower-order moments by resorting

to the product-difference (PD) algorithm. QMOM has been extensively validated for several
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problems with different internal coordinates (Barret and Webb, 1998; Marchisio, Vigil, and
Fox, 2003b; Marchisio, Pikturna, Fox, Vigil, and Barresi, 2003a). One of the main limitations
of QMOM is that since the solid phase is represented through the moments of the distribution,
the phase-average velocity of the different solid phases must be used to solve the transport
equations for the moments. Thus, in order to use this method in the context of the muitiphase
flows, it is necessary to extend QMOM to handle cases where each particle size is convected
by its own velocity.

In order to address these issues, the DQMOM has been formulated and validated by Marchi-
sio and Fox (2005). DQMOM is based on the direct solution of the transport equations for
weights and abscissas of the quadrature approximation. The calculation of the quadrature
approximation through this direct formulation presents the advantage of being directly ap-
plicable to multi-variate PBE (i.e., PBE with more than one internal coordinate). Moreover,
as it will become clear below, each node of the quadrature approximation can be treated as
a distinct solid phase. DQMOM thus offers a powerful approach for describing polydisperse
solids undergoing segregation, growth, aggregation and breakage processes in the context of
CFD simulations.

As follows, the detailed derivation of DQMOM for a monovariate population balance is
explained and then the method is applied to bivariate variables: particle size L and particle
temperature T;. The bivariate population balance equations can be also extended to other
variables, such as solid mass fraction X;. Then the moment transformation of aggregation and
breakage equation for rmonovariate and bivariate are presented in the third part. At last, the

combination of DQMOM method with multi-fluid model is discussed.

3.2.1 Monovariate Population Balance

The population balance for the PSD with number density function n(L;x, t) can be written

in terms of one internal variable, particle size length L, as follows:

on(L; x,t) o

B V- [us|L)n(Lix, t)] = S(L; x,1), (3.66)
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where S(L;x,t) represents the net rate of introduction of new particles into the system (e.g.,
due to the chemical reaction, aggregation and breakage) and (u,;|L) is the mean velocity
conditioned on the particle length L, by definition, {(us|L = L,) = ug,. X is the spatial
coordinate and ¢ is the time.
Using DQMOM, n(L;x,t} can be approximated in terms of a summation of N Dirac delta
functions (presumed finite-mode PSD):
N
n(L;x,t) = > wa(x,t)8[L — La(x,1)], (3.67)

o=1

where w,, is the weight of the delta function centered at the characteristic length Lo. If Eq. 3.67
“is substituted into Eq. 3.66, it is possible to derive transport equations for the N weights wg
and the N characteristic lengths L.

The population balance in terms of the presumed finite-mode PSD becomes:

N
Z (L—La) [3wa+v (wausa)] Z‘SI(L Lq) [wa( Bt +Uso - VLa)| = S(L,T) (3.68)

=1

where §'(L — L) is the first derivative of the Dirac delta function §(L —~ L) and after some

manipulation, Eq. 3.68 becomes:

Z 8(L — Ly E §(L = Lo)[be — Laaa] = S(L, T), (3.69)
where
Bwa
5r + Y (Watla) = aa, (3.70)
-a—(i"(—;‘t—"‘) 4V (Walals) = b (3.71)

Moment transforms can be applied to determine the functional forms of a, and b, and

then solving the PBE. The k** moment of the PSD is defined as

N
(o]
mi(x,t) = f n(L;x, ) LI ~ ZwaLﬁl (3.72)
0 a=1
Given that:
8(L — Ly)LRdL = LE,
0
oQ
f §'(L — La)LFdL = —kLE1,
000

§"(L — Lo)L*dL = k(k — 1)LE2, (3.73)
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then the moment transform of Eq. 3.69 yields:
N
> aaLE(1 — k) + kbo LE! =5, (3.74)
a=1
where

By = fo ” S{LYL*dL. (3.75)

As it is possible to see from Eq. 3.74, the source terms of the transport equations of the
N weights w, and characteristic lengths L, are defined through a linear system involving the
first 2N moments of the population balance equation (e.g., k& == 0,--- ,2N — 1). This linear

system can be written in matrix form as:
Ax=d, (3.76)

where the 2N x 2N coefficient matrix A = [ A, A2:| is defined by

1 1
0 0
Ay = ~L2 —-L% (3.77)
2(1 - N)LIV-1 0 2(1 - N)LANE
and } ;
0 0
1 1
Ay = 2L, 2Ly : (3.78)
(N - 1)L3N-2 . (2N - 1)LA?
T a
X = l:a,l e aN bl 000 b.N} = ] (3.79)
b

d= [30 §2N—1]T- (3.80)
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If N =1 the PSD is represented by only one delta function and A is the identity matrix. The

source terms are:

“ = f" (3.81)
b1 51
If N =2 the PSD is described by two delta functions, and
(1 1 0 0]
A= ° 0 : ' (3.82)
—L? —I2 2L; 2L
_~2L{' —-2L3 312 3L3
By inverting A, we can get the source term:
a1 (@I - Lo)12 —6L1Ls 3(Ly + L) 2 ]
az| (Ly — 3L9) 13 6L1Lo —3(L1 + Ly} 2
b| | 20202 —(L 4 LiLa+ I3y LR+ LiLy+I8) —Li— Iy
| b2 | 2131} (L3 + L1Lo + 4L3)Ly  ~2(L3 +LiLy+L3) L+ Ly |
_ﬁo_
Si
(Lq—_lnﬁ;-jg | e
_§3_
¥ N=3 the PSD is described by three delta functions, and
[ 1 1 1 0 0 0
0 0 0 1 1 1
A —L? -1 -I12 2I; 2L, 2L | _ (3.84)
—2r% —2L% -—2L} 3L% 3L} 3L%
—3L} —3L% -—3L% 413 4L} 413
_—4L? —~4L3 —4L3 5L% 5L% 5L§_
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and thus inverting A

0 o
as Si
Bl a7 (3.85)
by 5,
ba Sy
_bs_ - ._5-

3.2.2 Bivariate Population Balance

The PSD defined in terms of two internal coordinates - particle size L and particle tem-
perature T’ can be written as:
N
n(L,T5%,8) = Y wa(X,£)0[L — La(x, t)]8[T — Talx, t)]. (3.86)
o=1

In this case, the governing equation for the bivariate population balance is:

on{L,T;x,t)

= 4+ V - [(us|Lyn(L, T; %, £)]) = S(L, T; x, 1), (3.87)

where S(L,T;x,t) is the source term due to aggregation, breakage and growth. If Eq. 3.86 is

substituted into Eq. 3.87 the population balance becomes:

N N
D (L - La)S(T — TaYag — Y 8'(L ~ Lo)8(T — To)[ba — Latal

a=1 =1

N
— Y (L~ L)' (T — Ta)(ca — Tats) = S(L,T), (3.88)

a=1

.where

Owq
% + V. (wausa) = Qg, (389)
%‘PE) + V- (walalsa) = ba, (3.90)
a—(c-dg%—@ +V - (waTolsa) = co- (3.91)

In order to obtain the source terms of the transport equations for we, wWele, waTk, it is

necessary to apply the moment transformation. We now define the moment of mixed order k, I
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as follows:

my (X, t} = f f n{L, T;x,t) LFT' LT =~ Z%kag. (3.92)

=1

If the moment transformation is applied to Eq. 3.88, the following system of linear equations
is obtained:

N
> aoLETE[L — k — 1] + kb Ly T, + lca LETS = Sy, (3.93)
a=1
where the mixed moments ?k,; of the source term are:
_ o0 o0
Ski(x,t) = / f S(L, T)L*T' dL dT. (3.94)
0o Jo
This linear system of 3N equations can be written in matrix form

Ax =d, (3.95)

where the A is a square matrix of rank 3N and where

X = a1 cran bl bN ¢1 - CN = b o (396)

In what follows A and d will be derived for N =1,2,3.
If N = 1 the PSD is represented by only one delta function and A is the identity matrix.

The source terms are:

a1 50,0
bi| = S0 - (3.97)
1 §0,1

If N = 2 the PSD is described by two delta functions; since each delta function is determined by
three parameters wy, La, Tw, six mixed moments have to be calculated to close the moments.
There is not an unique way to close the problem, as follows, in order to relate the moments
to the ones used in monoviarate case, the orders {k,1} = {0,0;1,0;2,0;3,0} and {k,[} =

{0,1;3,1} are chosen. Note that the last moment {3, 1} corresponds to particle thermal energy.
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Then the linear system has the following form:

1 1 6o 0 0 0]

0 0 1 1 0 0

Ao o ~L% 2Ly 2Ly 0 O
-2r3 21§ 3L 3L o0 O

0 0 0 0 1 1
|—3L3Ty -3L3T» 3L3Ty 3L3T, I3 I3

a
T
X=[a1 az b1 b o Cz] = [k
C

and
T
d= [30,0 S10 Soo Sso Soa 33,1} .
" We can rewrite the matrix as:

A 0 A1 Dy

bl

Az Azl | X Dy

where -~ -
1 1 0 0
0 ] 1 1
A]_ = )
-L? -I3 2L; 2L
_—2L:1’ —2Lg 3LL{ 3L§_
T
Xl = |:a1 an bl 52:| )
and

T
Dy = [Eo,o §1,0 §2,0 gs,o] .

; (3.98)

(3.99)

(3.100)

(3.101)

(3.102)

(3.103)

(3.104)

Ay, &1 and Dj are the same maitrices we used in monovariate case for N = 2, thus the source

terms ai, a2, b1, by have the same value as the monovariate case. The source term Xy = [cg, cp|T

can be obtained by solving following equation:

Aa Xy + Az Xy = Dy,

(3.105)
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where

and
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Xy = A7H(Da — A2 Xy) = AFH(D2 — A AT D),

0 0 0 0
.AQ = H
—3L3Ty —3LYTy BL2Ty B3I2T
1 1
-"4-3 = H
i 13

a7
Dy = [30,1 -53,1] 0

(3.106)

(3.107)

(3.108)

(3.109)

If N = 3, the PSD is described through three delta functions. Since each delta function

is determined by three parameters wq, Lo, T, nine mixed moments have to be used to close

the problem. In this case, the following moments will be used to close the problem {k,1} ==

{0,0;1,0;2,0;3,0;4,0;5,0} and {k,1} = {0,1;1,1;3,1}. Consequently the linear system has

the following form:

and

1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0
—L? ~L2 ~L¥ 2Ly 2L, 2Ly O 0 O
-2r3 —2rf 213 3% 3L 3L 0 0 O
—-3L%  -3L% 314 4L} 4L8 4L 0 0 0
—4L§  —4L§ —4L3 5L{ 5L% 5L% 0 0 O

0 0 0 0 0 0 1 1 1

—Liy  —LTy  —L3T13 7 Ty T3 L1 Ly I3

—-3L3Ty —3L3T» -3L3T3 3L3Ty 3LiTy 3127y L3 I3 LgJ

T T
X“[al as az by by b3 ¢ (,’3:| =[a b C] )

T
d= [_5—0,0 31,0 52,0 3‘3,0 3;,0 gs,o 30,1 31,1 §3,1] ;

. (3.110)

(3.111)

(3.112)
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using the same method as for N = 2 to divide the matrix to four small matrices, the source

terms Xy = [ey, co, c;:,]T can be get from the equation,
Ay = A‘;l(Dz — .AQAI_1231). (3.113)

3.2.3 Aggregation and Breakage Equation

For monovariate case, the moment transform of the source term only with aggregation and

breakage (the molecular growth rate is zero) is:

Sk(x,t) = Bi(x,8) — Dy(x,t) + Bi(x,t) — Da(x,t), (3.114)
where
—n 1 o0 o
B, = 5/ n()\;x,t)[ Blu, M) (u® + X3 ¥n(u; x, t)dud), {3.115)
0 0
oo [e0]
D, = / L*n(L; %, ) / B(L, \)n(; x, t)dAdL, (3.116)
0 0
B, = / e f a(Nb(L|A)n(A; x, £)drdL, (3.117)
0 0
D, = f L*a(Lyn(L;x, t)dL, (3.118)
0

are respectively the moments of the birth and death rates for aggregation and breakage. The
detail derivation about the aggregation and breakage moments can be found in the work
of Marchisio, Vigil, and Fox (2003b). In the equation G(L, A) is the aggregation kernel that is
the frequency of collision of two particles with length L and A, a(L) is the breakage kernel that
is the frequency of disruption of a particle of length L, and b(L|A) is the fragment distribution
function that contains information on the fragments produced by a breakage event.

Applying the quadrature approximation reported in Eq. 3.72, the source term becomes :
1 N N N N - N
S = 5 Z wy ij(Lf + L?-)k/aﬁij - Z Lﬁcwi Zﬁijwj + Z ab; w; — ZLfaiwi, (3.119)
i=t  j=1 i=1 i=1 fe=1 i=1
where §;; = F(L;, L), a; = a{L;), and

) = f L*b(L|L;)dL. (3.120)
0

1
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For the bivariate case, the source term for the pure aggregation and breakage case (without

particle growth) can be expressed as:
?k,![(x, t) = _Bz,l(xst) - FD“Z,Z (X,t) + Ez,l(x:t) - _ﬁz,l(xnt)! (3121)

and the first term represents birth due to aggregation, the second term is death due to aggre-
gation, the third one is birth due to breakage and the last term is death due to breakage. In
what follows, the detailed derivation to obtain these four terms is presented.

The general aggregation-breakage equation for a homogeneous system with two variables

(volume v = L3, ¢ = A% and energy e = TL?, ¢’ = T")3) can be expressed as:

an' (v, e)

1 O o0
80 27 [T ow—aae-eeimw-ee- e d)duae
0 0

oo [e.0] ’

—n'{v, e)f f B'(v, ¢, e €0 (e, ¢ )dede’
o Jo

o0 oo
-+ / f a'(e, e )b (v, ele, ¢')n (e, &' )dede’
Jo Jo
—d(v,e)n’ (v, e). (3.122)
Using the Jacobian matrix:

2 2
B(U? B) — 3L 0 — 3L5 and 6(6: C’) — 3A
HLT)  |spar f3 ONTY)  axzgr a3

= 35, (3.123)

it is possible to change the number density function to length and temperature based one. The

two density functions are related by:

n' (v, e)dvde = n' (L3, L*T)3L%dLdT = n(L, T)dLdT,

n'(e, &) dede’ = n'(X3, 33T)3A3dNdT = n(X, T")dNdT". (3.124)

Multiplying 3L° on both sides of Eq. 3.122, we get:

on(L,T)

5 = BY(L,T) - DXL, T) + BYL,T) - DL, T). (3.125)
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The first term will be:

5
BYL,T)= 3L f f Bv—eee—e, e (v—ee— (e )dede
3L5 3 3 / 3 / ! !
ﬁ(L =X 0 e—€, T/ (L3 — X3,e ~ &' )n(X, T')dAdT

3L5 / f ﬁ((L3 ,\3)1/3 TU T.r)n((s( Aa)?:;:’/f,’)n(A,T’)dAdT!

nl((L3 — )3 I/S,T.r.r

and from the conservation of the energy, we get:

L3T — 337"
! o
T = —g—g (3.127)

The second term is:
le o] oo
DL, T)= 3L5n’(v,e)[ f B'{v,¢e,e,e)n (e, e )dede’
0
0 (e o0
= 3L3n/(L3, L*T) f / B(L3, X e, T (X, TYdAIT'
0 Jo
oo o a)
— n(L,T) f / B(L, A, T, T')n(\, T')dAdT". © (3.128)
o Jo
Applying the same methods, the third term and the last term are:
oo o0
BL,T) = / f a(X, TYB(L, T |, T\, T dAT", (3.129)
o Jo
DL, T) = a(L, T)n(L,T). ' (3.130)

If moment transformation is applied on all these four terms and we use:

S = L3 =8
2
U
dl = ﬁdﬂ,
u? '
dT' = —dT", (3.131)
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we get:
By, == f f / / Il ol A (?3 )\i);;};T”)n(A,T’)dAdT’deL
37 3
/ AT [ oot (S5
—n(u, T")n(X, T') 5dudAdT’dT”
f f / f B + X3YH/ (Asf;i“?") nu, T")n(\, T')dudAdT'dT")
Dy, = f ] f f BLFT (L, T)n(\, T")dAdLdT'dT, (3.132)
BH—/J//"[ a5, TYB(L, T|A, T') LA Tn(\, T')dNdLAT'dT, (3.133)
DM_ f f LT a(L, TYn(L, T)dLdT. (3.134)

Employing the DQMOM method, use Eq. 3.92, the source term can be calculated as:

N N 3 3\ !
_ 1 L3T; + L3T;
Sy = 3 qu: ij(L;?’ + Lg—’)k/e'ﬁij (Wﬁg—i)

i=1 j-—l
_ Z LETho; Z Bijw; + ZTla;b ®) s — Z L\ T aw;, (3.135)
i=1
where
oo o0
5" = / f L*T'b(L, T|A, T')dLdT. (3.136)
0 0

3.2.4 DOQMOM-Muiti-Fluid Model

"In order to be consistent with the variables used in the multi-fuid model, we need to
‘associate the weights w, and abscissas L, with the solid volume fraction &5, and the effective
length £5,L, for each solid phase. The volume fraction of each solid phase is related to the

abscissas L, and weights w, by

£3
Esa = Ry Liwe = kvgg-f, (3.137)
and the effective length of the solid phase is
£4

Esala = kyLiwy = k,,w—g, (3.138)

a4
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where k, is a volumetric shape factor (e.g., for spherical particles &, == 7/6) and L, = woLg.

If Eqgs. 3.137 is substituted into the transport equation for eg,, the following equation can be

obtained:

a(ssapscr)

ot +V- (5scxpsausa)

= kypsa :'9(—%{@ +V- (51 sa)]

= kypsa 3%%—“ —2538;‘” fg(v um)+usa-V(£—%)]

= o 128502 25 00 4 L0 ) 4 85w VLo~ 2w Ve

=3k,,psa£z(8£ sy - Vg + LoV - Ugg) — 2k,,pm£':(8gt°‘+um Vg + w0V - Uga)
Hup 512 + 9 (Laie)] = upin 5122 1V - o)

= 8kypsalibe — 2kypealiaq. (3.139)

If we substitute Eqs. 3.138 into the transport equation for €4, L,, Wwe can also get:

esal
% V- (es Lo:psausa)
[A(L2 fw
= k’upsa ( / cx) + V. ( sa)
| ot wi
Es az L'4 Bwa [,4 Lt
- 3oL, 1:4 Bue LA c3 ct
=y k.upsa _4w—3 at - 8ta + "_a(V usa) + 4: Csrusa " VE — 3 a usa VI'-Ua
oL 3wa
vpso: 3( = FUse VLy+ L,V - usa) vPsa 4 ( + Usn - Vg +we V - usa)
£l3 3£ Bw
= 4kvp.sa 3 [ 3t ) (Eausa)] Upsa 4 [ = (wauso:)]
= dkypsa Liba — 3kypsaltas. (3.140)

The first transport

equation (Eq. 3.139) represents the continuity equation for the ot solid

phase in the presence of aggregation and breakage (¢f. Eq. 3.3) but without mass transfer

between gas and solids. It is straightforward to verify that the summation of the transport

equations over the NV

solid phases leads to a null source term. This implies that aggregation

and breakage do not change the total solid volume fraction (i.e., the solid volume fraction is
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preserved). Thus, the source term for the gas volume fraction ¢, in the presence of aggregation
and breakage is null, and the relative volume fractions of the different solid phases change due
to aggregation and breakage. The Eq. 3.140 is just a new scalar equation for particle length
L for each solid phase.

For the bivariate case with two variables L, and Ty, a new term accounting for the ag-
gregation and breakage will appear on the right hand side of the solid energy equation. From

Eq. 3.91, we can get:

Nw, T,
% + V  (weTqUse)
BT Ow,
Ty + Tn— ¥ % 4 Tollgn - Vs + Wolley - VT, +woToV - gy
[T ) O
= Woy | —— 4+ U - VT | + T &+um-Vwa+an-uw
| Bt ] ot
[ AT. 1 Jw
= Wy _3_; + U - VTa_ + T, [ 6: +V- (waum)]
T :
= Wiy == + U - VIy| + Tha,
| ¢ |
=K (3.141}

After some manipulation, the following equation can be obtained:

o7, o — Tao
e+ tea VT, = 2T, (3.142)
Multiplying £5005aCpse On both side of Eq. 3.142, the equation becomes:
T, 3
Escxpsacpscx —at— +ug, VIg ) = kyLapsansa(0a — Tola)- (3.143)

In summary, the three transport equations for solid void fraction, particle length and particle

temperature with pure aggregation and breakage are:

d

@—Sgﬁﬂ + V- (UgoEsapsa) = Skvpsaliba — ZhupsaLaq, (3.144)
Nesa L
% +V. (usa{':saLaPsa) = 4kvpsaLgba - 3kuP5aLia’m (3-145)

a7,
Esapsacpsa ( Ot + Usa - VTG) = kngPsansaCa - kngPsacpsaTaaa- (3-146)
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3.3 Numerical Methods

3.3.1 Discretization

A staggered grid is used for discretizing PDEs specified in the previous sections. Scalars,
such as pressure, void fraction, temperature and mass fraction are stored at the cell centers and
the components of the velocity vector are stored at the cell faces. The grid arrangement for
a computation cell is shown in Fig. 3.3. All the scalars equation are solved on the main grid,
and the equations for the velocity vector components are solved on the staggered grids. Thus
there are four grids used for the solution. Patankar {1980) pointed out that when pressure and
velocity components are stored at the same grid locations, a checkerboard pressure can develop

as an acceptable solution, so a staggered grid is used to prevent such unphysical pressure fields.

L,jtl,k

Variables storage locations:
Scalars - cell center

£ ij. k
Vectors - cell face

u it172,4, k

v iLgHl2 k-

w i, j, k+1/2

i,J, k+1

Figure 3.3 A staggered grid for a computation cell

In multiphase flow calculation, a finite volume or control volume (CV) method is usually
preferred. This method has an advantage to ensure the global conservation of mass, momentum
and even energy on coarse grid (Patankar, 1980). Since a fine grid is computation expensive,
CV method is more attractive in practical application. For the discretization, second-order
difference is used for diffusive flux terms. The discretization of the convection terms is a more
difficult task to do and at the early stage of the work, first-order upwind (FOU) scheme is
used. In order to improve the accuracy and avoid numerical diffusion, high-order schemes,

such as Superbee is preferred. The detailed information about Superbee and other second-
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order schemes can be found in the numerical technique report by Syamlal {1998).

3.3.2 Solution Algorithm

A modified semi-implicit method for pressure-linked equations (SIMPLE) is used for solving
the discretized equation for the multiphase flow. A solid volume fraction correction equation,
instead of fluid-pressure correction equation are used, which appear to help convergence in
the loosely packed region. Solids pressure correction‘equation requires that 8P;/0e; does
not vanish when €, —+ 0. Solids volume fraction correction equation does not have such a
restriction, but must account for the effect of solids pressure so that the computation in the
densely packed regions are stabilized. To speed up the code, automatic time-step adjustment
is applied. This change ensures that the run progresses always at its highest execution speed.
It can be demonstrated that this adjustment is 3-30 times faster than the constant time-step.
The multiphase momentum equations are strongly coupled through the momentum exchange
term, totally decoupling of the equations by calculating the inter-phase transfer term from the
previous iteration values will make the iteration unstable or force the time step to be very
small, so the partial elimination algorithm (PEA) of Spalding (1980} is introduced to decouple
the equations.

An outline of the solution algorithm - modified SIMPLE - is described as the follow steps:

1. At the beginning of the time step, calculate physical properties, exchange coefficients

and reaction rates.

2. Calculate velocity fields u}, based on a guessed pressure field. (m = 0 to M, 0 denotes

gas phase, 1 to M denote solid phases.)
3. Calculate fluid pressure correction P_of

4. Update fluid pressure field applying an under relaxation: Py = Py +wy,F;, then calculate
velocity corrections uy, from P, and update velocity fields: un, = uj, +u;,. (For solids

phases, u,, calculated in this step is denoted as u}, in Step 6.)
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5. Calculate the gradients 8P, /0em for each solid phase, which will be used in the solid

volume correction equation, then calculate solids volume fraction correction e,.

6. Update solids volume fraction &, = €}, + wpser,,. Under relax only in the region, where
solids are densely packed and the solid volume fraction is increasing. Calculate solid

velocity correction and update solid velocity fields again uy, = u}, + ul,.

7. Calculate the void fraction by:

Eg‘—“l—ZEm

ms0

8. Calculate the solid pressure from the state equation P, = Ppn(ens).
9. Calculate temperatures, species mass fractions and other scalar equations.

10. Use the normalized residuals calculated in Steps 2, 3, 5 and 9 to check for convergence.
If the convergence criterion is not satisfied, the iteration is continued (step 2), otherwise

go to next time-step (step 1).

3.3.3 Time-Splitting Method

Time-splitting method, or fractional step is used to decouple the source term for the aggre-
gation, breakage and growth from the transport equations {Eqgs. 3.139, 3.140 and 3.143). The

transport equation can be generalized as:

d®
Frie (®) + T'(®) (3.147)
where ® represents either solid volume fraction, particle length or particle temperature, S(®) is
the change due to aggregation, breakage and growth, and T(®) is the change due to transport
which includes convection and diffusion. Therefore, over a small time step At, the time-

splitting method can be applied so that the different processes can be treated in separate

fractional steps.

1. In the first fractional time step, the change due to the convection and diffusion is solved

for every node using equations:

ad

— =T(®) with 3(0) = B(t). (3.148)
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The solution to Eq. 3.148 is denoted as &'(¢ + At).

2. In the next fractional time step, the change due to the aggregation, breakage and growth
term is found separately for every node using ®(¢ + At) as the initial condition:

d®

— =5(2) with ®(0)=&'(t+ Ar). (3.149)

This equation yields @(¢ + At) as the approximation of the solution of Eq. 3.147.

The overall time-splitting method can be represented as:

o transport ‘I)!(f+At) aggregationi:eakage} <I>(t+At), (3'150)
grow

thus the aggregation, breakage and growth term is decoupled from the transport equation and
can be treated with the most efficient numerical methods. For example, a stiff OQDE solver or

ISAT can be used to solve Eq. 3.149.

3.3.4 Grid Resolution Study

Grid resolution results are performed in a dilute riser simulation where period boundary
conditions are used on both vertical and horizonal directions. Period boundary conditions are
used to ignore the effect of the wall and the effect of inflow and outflow. To account for gas
movement, a periodic boundary with pressure drop 200 Pa in the vertical direction are used.
Simulations are conducted in a 2D channel, where the width is 10 cm and the height is 40 cm
(Fig. 3.4). The initial static bed height is 2 cm and the average solid volume fraction for the
entire domain has a constant value of 0.03. The particle diameter used in the simulations is

75 pm. Values of the other parameters are listed in Table 3.1.

Three kinds of resolution are used in the simulation. The coarse-grid is 16x64 cells,
and the cell size is 6.25 mmx 6.25 mm. The medium grid is 32x128, and the cell size is
3.125 mmx3.125 mm. The fine resolution is 2 mmx 2 mm, and the number of grids is 50x200.
The instantaneous contour plots of gas volume fraction, vector plots of gas velocity and con-

tour plots of granular temperature at 5 s with different resolutions are shown in Figs. 3.5, 3.6
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Table 3.1 Particle properties and parameters used in the simulation.

Width, D cm 10
Height, L cIm 40
Initial static bed height, H cm 2
Particle diameter, d,, Um 75
Particle density, ps kg/m? 1500
Gas density, pg kg/m? 1.3
Gas viscosity, pqg kg/(m-s) 1.8x107°
Coeflicient of restitution, e 0.9
Initial gas pressure, Py ;n kPa 101.0
Vertical gas velocity, Vg in cm/s 100
Initial gas temperature, Ty in K 208
Pressure drop along the height, AP Pa 200

and 3.7. The graphs show that, if a coarse grid is used, the flow is almost uniform and not
many details of the flow are resolved. The gas velocity is also nearly uniform and there are
not many fluctuations on the magnitude of the velocity and not any recirculation on the gas
flow. The granular temperature is also very uniform except a few large value at some region
where the solid volume fraction is high. When the grid becomes finer, more fine bands and
structures appear, and the length of the structures becomes finer. For the gas velocity, the gas
recirculates in some region and more fluctuations appear. For the granular temperature, more
small structures are also observed. It is safe to say that, when the meshes becomes finer and
finer, the flow will continue to change and even smaller structure will be appear.

In multiphase flow, the grid size dependence result is a qualitative measurement of the
average bed behavior rather than a point to point convergence. Therefore, the average slip
velocity in vertical direction over 13 s is compared in the Table 3.2 for three different resolutions.
The comparison shows that, the finer grid, the longer CPU time. When the grid becomes finer,
the average slip velocity become closer. The CPU time for the fine grid is 23 times the CPU
time of the coarse grid. So very fine grid simulation is computationally expensive. The mean

slip velocity on a coarse grid is much lower than the values on medium and fine grids. Due to
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Table 3.2 Results comparison for three different resclutions.

1 2 3
Number of grids 16x64 32x128 50x200
CPU time used(s) 7547 48769 170915

Average V; over the whole domain (cm/s) 157.08 105.82  87.27
Average V; over the whole domain (cm/s) 127.35  69.52 49.31
Average slip velocity at y direction (cm/s) 2973  36.30 37.96

the costly CPU time for the fine grid, the result from medium grid can be used as a “grid size

independent” result. The acceptable grid is around 3 mm.

Figure 3.4 The fluidized bed geometry for the simulation
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Figure 3.5 Instantaneous contour plots of gas volume fraction at 5s with

different resolutions. Left: coarse gird. Middle: medium grid.

Right: fine grid.

Figure 3.6 Instantanecus vector plots of gas velocity at bs with different

Left: coarse gird. Middle: medium grid. Right:

resolutions.
fine grid.
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Figure 3.7 Instantaneous contour plots of granular temperature at 5s with
different resolutions. Left: coarse gird. Middle: medium grid.
Right: fine grid.
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CHAPTER 4. APPLICATION OF DQMOM TO POLYDISPERSE
GAS-SOLID FLUIDIZED BEDS

4.1 Imtroduction

FB polymerization reactors have been long recognized as one of the main technologies for
producing polyolefins (PP and PE). Cormpared to other reactors, fluidized beds have several
advantages such as the capability of continuous operation and transport of solids in and out of
the bed; high heat- and mass-transfer rates from gas to particles leading to fast reaction and
uniform temperature in the bed, and a high solids mixing rate (Fan and Zhu, 1998). Much
research has been done on FB polymerization reactors, and most current research focuses on
the kinetic aspects. However, from the industrial viewpoint, the behavior of these reactors
must be studied in consideration of particle and fluid dynamics in the reactor. With the devel-
opment of high-speed computers, CFD has become available to provide valuable information
concerning time-dependent phenomena in the fluidized bed, such as particle overheating, ex-
cessive agglomeration and bed defluidization. These pieces of information can help for reactor
design, scale up, and optimization.

FB reactors are widely used in many unit operations in the chemical, petroleum, phar-
maceutical, agricultural, food and biochemical industries. They are well known as excellent
reactors for their superior rates of heat and mass transfer between the gas and the solid par-
ticles, and for the efficient mixing of reacting species. With the development of high-speed
computers, CFD has played an important role in understanding the flow behavior of these
two-phase flow systems. As is well known, most of today’s CFD calculations for gas-solid flows
are based on the assumption of a monodispersed solid phase (e.g., all particles have the same

characteristic size) or on the assumption of a constant PSD (e.g, particles may be represented
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by a few different size classes but no changes in the PSD are accounted for (Mathiesen et al.,
2000}). However, in many practical cases solid particles belong to a PSD, which changes con-
tinuously according to the operating conditions. For example, in FB polyolefin reactors, small
catalyst particles (e.g., 20-80 pm) are introduced at a point above the gas distributor, and
when exposed to the gas flow containing the monomer, polymerization occurs. At the early
stage of polymerization, the catalyst particles fragment into a large number of small particles,
which are quickly encapsulated by the newly-formed polymer ‘and grow continuously, reaching
a typical size of 200-3000 pm. Due to the differences in the polymer particle sizes, segregation
occurs and fully-grown polymer partictes migrate to the bottom where they are removed from
the reactor. The smaller pre-polymerized particles and fresh catalyst particles tend to migrate
to the upper portions of the reactor and continue to react with monomers (Kim and Cheot,
2001). In addition, under certain undesirable operating conditions (e.g., when the reactor op-
erates close to the polymer softening temperature), polymer particles can become “sticky” and
during collisions can form large agglomerates that can possibly undergo sintering and cause
defluidization. In the opposite situation, if the bed is ‘too cold, the particles can become hrittle
and may fracture forming small fragments that elutriate with the gas (Hatzantonis, Goulas,
and Kipar_issides, 1998; Yiannoulakis, Yiagopoulos, and Kiparissides, 2001). Successful CFD
models for FB poly-olefin reactors must be capable of describing such events in order to guide
reactor desigﬁ, scale up and optimization.

Recent research efforts have been directed towards the investigation of the effect of the PSD
on the fluid dynamics of FB reactors. However, most work has focused on the segregation of
binary mixtures. van Wachem and coworkers (2001), using kinetic theory applied to a bimodal
particle mixture, predicted the expansion of the bed with respect to a monodisperse PSD.
Howley and Glasser (2002) examined a general continuum model for a multi-particle fluidized
bed and provided a description of the observed phenomenon of “layer inversion” for a binary
mixture. In the work of Hoomans et al. {1996), discrete particle simulations were used to
investigate segregation phenomena in binary and ternary mixtures, good agreement is obtained

in comparison to experiments.
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In order to rigorously account for particle-related phenomena (e.g, agglomeration and
breakage), the population balance equation (PBE)} must be solved along with the continuity
and momentum balance equations. However, attempts to incorporate the PBE into multi-
fluid codes and to describe the evolution of the P8D in a FB reactor are very few. Recently,
researchers have tried to couple the PBE with an Euler-Euler two-fluid model to simulate
bubble-column reactors (Olmos et al., 2001; Lo, 1996). In their work, the dispersed phase
was represented by ten different size groups but only the momenturn balance for the mixture
was solved due to the significant reduction in the computing time. Thus the ten different
classes were convected in the computational domain with the same mean algebraic velocity.
Results showed good agreement with experiments for some hydrodynamic variables, but un-
derestimated the global hold up. Other researchers have also tried to solve the PBE with the
multi-fluid code simultaneously, but most work was done in gas-liquid systems, not in gas-solid
systems (Lehr and Mewes, 2001; Venneker et al., 2002; Buwa and Ranade, 2002).

For spatially homogeneous systems, many different methods exist for solving the PBE
and a lucid description of the mathematical and numerical issues involved can be found in
Ramakrishna’s book (2000). The most direct method is the DPB approach or CM, in which
the internal coordinate (e.g, particle length or volume) is discretized into a finite series of bins.
In order to get reasonable results, a large number of classes must be used (e.g., 20-30), so that
the DPB method is not a feasible approach for CFD calculations. An alternative approach
uses Monte-Carle -simulations. This approach is based on the solution of the PBE in terms
of its stochastic equivalent. A population of particles undergoes the “real” physical processes,
and events occur according to the appropriate probabilities. For more details on this approach
see the papers of Smith and Matsoukas {1998) and Lee and Matsoukas (2000). Although this
approach is theoretically applicable, especially for Lagrangian-Iulerian simulations, in order to
reduce the statistical error a very large number of particles must be used. Due to Hmitations on
the computational resources, the full incorporation of Monte-Carlo methods with CFD codes
is at the moment intractable (Madec, Falk, and Plasari, 2001, 2003).

An attractive alternative is represented by the method of moments where the PSD is
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tracked through its moments by integrating out the internal coordinate. The main advantage
of MOM is that the number of scalars required is very small (i.e., usually 4-6), which makes the
implementation in CFD codes feasible. However, due to the difficulties related with expressing
transport equations in terms of the moments themselves, the method has been scarcely applied.
This is the so-called closure problem, pointed out first by Hulburt and Katz (1964), and
recently reviewed by Diemer and Olson {2002}. As an alternative, McGraw (1997) developed
the so-called QMOM, which is based on the approximation of the unclosed terms by using
an ad-hoc quadrature formula. The quadrature approximation (i.e., its abscissas and weights)
can be determined from the lower-order moments (Dette and Studden, 1997) by resorting to
the product-difference (PD) algorithm (Gordon, 1968). QMOM has been extensively validated
for several problems with different internal coordinates (Barret and Webb, 1998; Marchisio,
Vigil, and Fox, 2003b; Marchisio, Pikturna, Fox, Vigil, and Barresi, 2003a). One of the main
limitations of QMOM is that since the solid phase is represented through the moments of the
distribution, the phase-average velocity of the different solid phases must be used to solve the
transport equations for the moments. Thus, in order to use this method in the context of the
multiphase flows, it is necessary to extend QMOM to handle cases where each particle size is
convected by its own velocity.

In order.to address these issues, the DQMOM has been formulated and validated by Marchi-
sio and Fox (2005), DQMOM is based on the direct solution of the transport equations for
weights and abscissas of the quadrature approximation. The calculation of the guadrature
approximation through this direct formulation presents the advantage of being directly ap-
plicable to multi-variate PBE (i.e., PBE with more than one internal coordinate). Moreover,
as it will become clear below, each node of the quadrature approximation can be treated as
a distinct solid phase. DQMOM thus offers a powerful approach for describing polydisperse
solids undergoing segregation, growth, aggregation and breakage processes in the context of
CFD simulations.

In this work, DQMOM is implemented in a multi-fluid model for simulating polydisperse

gas-solid FB reactors. First, the general governing equations for the multi-flutd model are
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presented in Sec. 4.2. Next, in Sec. 4.3, the implementation of aggregation and breakage in
the DQMOM multi-fluid model is described. Finally, CFD predictions for the evolution of the
PSD in a FB reactor with aggregation and breakage are presented in Sec. 4.4. Conclusions are

drawn in Sec 4.5.

4.2 The DQMOM-Multi-Fluid Model

The detailed mathematical modeling of FB reactors is very complex since it involves inter-
actions between closely coupled phenomena, such as multiphase flow dynamics, mass transfer,
heat transfer, chemical reactions, and particulate processes such as aggregation and breakage.
_The simultaneous numerical solution of the equations for continuity, momentum, energy, chem-
ical species is required. In addition, for polydisperse solids a PBE is needed. For simplicity,
in this work the FB is assumed to be isothermal with no chemical reactions, and the PSD
changes only due to aggregation and breakage. Thus, our goal is to build the link between
the PBE and the continuity and momentum balance equations, and to obtain an economical
but accurate method for describing the time evolution of the PSD and the gas and solids flow
fields. In what follows, the multi-fluid model for gas-solid FB reactors is first described briefly.

The implementation of DQMOM in the multi-fuid model is then described in some detail.

4.2.1 Moulti-Fluid Model for Gas-Solid Flow

The multi-fluid model has been described in detail in Sec. 3.1 and here we limit the discuss
to the equations used in this work and all the variables are same as described before. The

continuity equation for the gas phase is

Oe
=S58 1V - (egpgug) =0, | (4.1)

In the absence of aggregation and breakage, the continuity equation of the " solid phase is

865&']0311

ot +V. (Esapsauso:) =0, (4-2)
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As will be shown below, aggregation and breakage processes will result in additional terms on

the right-hand side of Eq. 4.2. The momentum balance for the gas and solid phase are

N
7,
3t (€9PgU1g) + V - (£gPggug) = V - 0 + >~ £go + £gp8: (4.3)
a=1
8 il |
- (Esapsauscx) +V. (Esapsausausa) =V 05— fga + fﬁcx + EsaPsal) (4-4)
ot

g=1

A simple Newtonian closure is used for the gas-phase stress tensor. Two entirely different
methods are used to calculate the solid stress tensor in different regimes. For the plastic or
slowly shearing regime, the theories from the study of soil mechanics are used. For the viscous
or rapidly shearing regime, kinetic theory is used (Syamlal et al., 1993; Gidaspow, 1994; Lun
et al., 1984). The constitutive relations for the gas and solids stress tensors are summarized
in Table 4.1. Studies on the dynamics of a single particle in a fluid have shown that many
forces contribute to the gas-solid interactions (Fan and Zhu, 1998), but in this work only the
drag force and the buoyancy force are accounted for. The drag correlation used was derived
by Gidaspow (1994). The interaction forces between the different solid phases are expressed
in terms of the drag force and the enduring contact force in the plastic regime, as described by
Syamlal et al. (1993). The gas-solid and solid-solid interaction forces are listed in Table 4.2.
A detailed discussion of the parameters in the multi-fluid model can be found in Sec. 3.1. The
reader should keep in mind that the solid stress tensor and drag formulation appearing in
Tables 4.1 and 4.2 are slight modifications of the corresponding monodisperse solids models.
Thus the simulation results found using other polydisperse models (Mathiesen, Solberg, and
Hjertager, 2000; Arnarson and Willits, 1998) may differ quantitatively from those reported

here.
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Table 4.1 Constitutive relations for gas and solids stress tensors and the
solids collision parameters.

Gas stress tensor:
ogg=—-FI+7,

Tg = 2eggDyg — %Eg#gTr (Dg)1
D, = 1 [Vug + (Vu,)T]

Solids stress tensor (viscous regime):
oty = —Phl+ 7Y

P2, = K1082,04

Tha = 215aDsa + Ao Tr (Dsa) 1

2
9 ( —Klaﬁ'san(Dsa}+\/KfuT1'2(D.sa)5§a+4K4a€sn [K2QT}2(DSQ)+2K3HTI(D§C!)] )
o =

= 2e 50l

)\L’a = K2a55a\/9;
P'ga = K3CMESO£'\/-9—0;
KIC! = 2(1 + e)psag()aa

Koy = 4d.papsa(1 =+ 6)%—“9\;—%"‘- = %K3a

K = zafe afex [w{—3 ‘3/_’_76) (14 0.4(1 + €)(3e — 1)esaGao) T+ —-‘!\7?85”95“ 7£1+e)]

_ 12(1—e2)peago
Kia = dpa/T

900a = 5, T 33 2a=1 a5

Dso = % [Vusa + (Vusm)T]

Solids collision parameters:
e L _2___,2._3%“‘5 g TN ea
90pa = &, + e {dpatdyp) 2oa=1 o

g
Opa = (do + dg)/2
9. = EsafsabatEsgpspfs
s EsapPsatEsaPsp

Mo = %dgapsa

(Mo +mg)

*to be consistent with the notation used in MFIX, the abscissa L, and dy, are equivalent,

and represent the particle size for the o' solid phase.
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Table 4.2 Gas-solid and solid-solid interaction forces

Gas-solid interaction force:
fga =S _ESQVPQ bt Fga(usa - U.g)

1505sakte | 1 7feepalio bl 5p o < 0.8
I pa o

W =
%O’D EsaPQEdthg_usa|€;2.65 if Eg > 0[8
e e (1 + 0.15Rep ) if Repa < 1000
D = =
0.44 if Repe > 1000
_ Uy —U,aldpa
Reyy = €905} gﬂg 1p

Solid-solid interaction force:
fﬁa — -—(Fﬁa + F’)(usza = 'U.sﬁ)
Ciéa"
3(1+e}(%+ 8 )Esﬂpsﬁém‘p-‘ﬁ(dpﬁ'{'dpﬂ)zgogalusﬁ_usal
Bo = 27r(ps,3dgﬁ+pmdga)

3 *
m_ 2.0 x 108 (g, — €7)" ifeg <

0 if£g>€;

4.2.2 Direct Quadrature Method of Moments

A polydisperse solid phase can be modeled by a multi-variate distribution function n(L, us)
for the characteristic particle size L and the particle velocity vector u, whose transport equation

is (Marchisio and Fox, 2005):

dn(L,us;x,t)

5 + V  [usn(L, us; %, t)] + Vo, - [Fo(L, ug;x, t)] = S(L, us; x, t), (4.5)

where x is the spatial coordinate, and ¢ is time. In this expression, S{L, us; x,£) is a “source”
term that represents discontinuous jumps in property space (i.e., due to aggregation and break-
age events), whereas F is the force acting to accelerate the particles. Note that when Eq. 4.5
is used to evaluate the size-conditioned average velocity of a particle uge = (us|L = Ly), the

size-conditioned average force (F|L = L,) must be consistent with the terms on the right-hand
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side of Eq. 4.4. In this work, we will circumvent the difficulty of finding a consistent definition
for F by simply using Eq. 4.4 to define u,.

Using DQMOM, the distribution function n(L, u,) is approximated by a summation of N
Dirac delta functions:

N
n(L, ug; x,t) = Zwa(x, t)[L — Lyo(x,t)]6[us — wsa(x, t)], (4.6)

a=1
where w,, is the weight of the delta function centered at the characteristic particle size L, and
the characteristic velocity ug,. If Eq. 4.6 is inserted into Eq. 4.5, and a moment transformation
is applied, it is possible to derive the transport equations for the N weights w, (zero-order
moment) and the N abscissas L, (first-order moment with respect to length). As noted above,
the conditional first-order moment of u, can be used to derive the momentum balances for the
N velocities ug,. However, since we will assume that Eq. 4.4 holds, the transport equations

for the N weights w, and N abscissas L, can be found from the DQMOM representation of

the PSD:
+o0 . N
Tz i) = f (L, s %, Uy = 3 walx, 8L — La(x,2)]. (4.7)
=E3 a=1
Integrating out the velocity in Eq. 4.5, we obtain the solid-phase PBE:
?f"(g;tmﬁ +V - [(ua|Lyn(L; x, £)] = S(L;x, £), (4.8)

where (u;|L) is the mean velocity conditioned on L:
00
Fafielliess 8 = /_ en(Zy i, tdu, (4.9)
and S(L;x, t) is the size-dependent source term for aggregation and breakage. Notice that, by
definition, (us|L = L) = ug,.

Before explaining how to obtain transport equations for the weights w, and abscissas L,
it is important to highlight that previous validation studies of DQMOM and comparison of its
performance with QMOM have demonstrated that by using as few as N = 2 or 3 nodes, the
lower-order moments of the PSD:

00 N
me(x,t) = /0 n(L;x,t)LFdL ~ Zwa(x, HLE(x, 1), (4.10)

ozl
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are fracked with sur'prisingly small errors (Marchisio, Vigil, and Fox, 2003b; Marchisio, Pik-
turna, Fox, Vigil, and Barresi, 2003a; Marchisio and Fox, 2005)., The DQMOM approach has
been tested for predicting the time evolution of the PSD under aggregation, breakage and
molecular growth (Marchisio and Fox, 2005). The ability of the model to track the moments
of the PSD does not give any physical meaning to the nodes of the quadrature approximation
and, as explained in the original formulation of the model (McGraw, 1997), the weights wy,
and abscissas L, are simply the quadrature approximation for the moments. However, it has
been shown that the nodes can be thought of as different solid phases with characteristic par-
ticle size L, and velocity ug,, and that the quadrature approximation actually resembles the
shape of the undexrlying PSD (Marchisio and Fox, 2005). It is thus clear that each node of the
quadrature approximation is calculated in order to gunarantee that the moments of the PSD
are tracked with high accuracy but, at the same time, each node is treated as a distinct solid
phase giving the DQMOM-multi-fluid model the ability to treat polydisperse solids.

The rigorous derivation of the transport equations for the weights w, and weighted ab-
scissas Lo (Lo = Lawy) is in Sec. 3.2. Here we limit our discussion to a brief review of the
mathematical approach. The transport equations for the weights and weighted abscissas can

be written as:

% +V. (usawa) = g,y
6; (4.11)
3; +V- (usa[’a) = bg,

where a, and b, are defined through a linear system found from the first 2N moments (e.g.,

k=0,...,2N — 1) of the PSD. This linear system can be written in matrix form as:

Aa =d, (4.12)
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where the 2N x 2N coeflicient matrix A = [ A, Az] is defined by

1 1
0 0
A= ~I2 —Tg, (4.13)
21 - NYLAN-T L 2(1 - N)Lf\,N—l_
and _ )
0 0
1 1
Ay = 2L, Y 2Ly o (4-14)
(N —1)LAN-2 . (N - 1)LV

The 2V vector of unknowns « is defined by

T a
a:[al coeay by -e- bN] = , (4.15)
and the known right-hand side is

N T
a= 5 . 5] (4.16)

The source term for the k" moment Sy is defined by

S T Ry P
S (x,t) = LF*S(Lyx,t)dL. (4.17)
0

As shown below, with the DQMOM approximation the right-hand side of Eq. 4.17 is closed
in terms of the N weights and abscissas. The superscript V) on ?ﬁcm is a reminder that N
nodes are used to approximate the integral. As N increases, the quadrature approximation
will approach the exact value, albeit at a higher computational cost.

If the abscissas L, are unique, then A will be full rank. For this case, the source terms
for the transport equations of the weights w, and weighted lengths £, can be found simply by
inverting A in Eq. 4.12:

a=A"1ld _ (4.18)
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If at any point in the computational domain two abscissas are equal, then the matrix A is
not full rank {or the matrix is singular}, and therefore it is impossible to invert it. In order
to overcome this problem, a small perturbation can be added to the abscissas to make A full
rank. However, this method does not work very well as the number of nodes increases, and
alternative approaches can be used.

First of all, it is important to develop a reliable technique to detect any singularity of the
matrix A. The matrix can be singular (or nearly singular) when two abscissas become too close
to each other with an increase in the number of nodes. In such situations, the inverse of the
matrix can still be calculated, but it has a large error. Thus a safe way to detect a singularity
is to calculate the condition number of the matrix A when NV > 3. Here, the condition number
is defined as the ratio between the largest and smallest singular values. The reciprocal of the
condition number can be used as a control variable to monitor singularity of the matrix A. If
it is smaller than a small number (e.g., 1.0 x 107?), the matrix is considered singular.

When a singularity is detected, two possible approaches can be used to overcome the
problem. In the first one, for the computational cells where singularity happens the matrix
A is not inverted and the source vector « is simply set to zero. In this case, convection in
physical space will “solve” the singularity. If the second approach is used, the source vector
o is estimated from the average of the source vectors from neighboring cells. However it is
important to highlight that the frequency of this event is very low in the simulations. This
result is also confirmed by the fact that the abscissas L, are equal to each other only if the
final PSD is a monodispersed distribution centered at a unique value, which is not the case
in most practical applications. It is also clear that this singularity problem of the matrix A
is more related to boundary or initial conditions where monodispersed distributions might be
used.

In order to be consistent with the variables used in the multi-fluid model, we need to relate
the weights and abscissas to the solid volume fraction £, and the effective length 4oL, for

each solid phase. The volume fraction of each solid phase is related to the abscissas L, and
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weights w, by

£3
Esa = kyL3wg = kvw—g, (4.19)
and the effective length of the solid phase is
£4
Esala = kyLiwe = ky—2 (4.20)

3)
wa

where k, is a volumetric shape factor (e.g., for spherical particles k, = «/6). Using Eqgs. 4.19

and 4.20, the transport equations for £, and L, can be written as

l)gsapsg—: o Bk‘ 2] . lf “ﬂ b Zj'c'“psaLaan
———r— + ; (usassap-‘s&) v 24 ]

Fsalatio | G (ucunLapia) = thpmaldbe — Shopsalioa:
The first equation represents the continuity equation for the o** solid phase in the presence of
aggregation and breakage (cf. Eq. 4.2). It is clear that because of aggregation and breakage
the volume fraction of each solid phase will change according to its characteristic length L, is
order to mimic the evolution of the PSD. It is straightforward to verify that the summation of
the transport equations over the N solid phases leads to a ﬁull source term. This implies that
aggregation and breakage do not change the total solid volume fraction (i.e., the solid volume
fraction is preserved). Thus, the source term for the gas volume fraction €, is null, and the
relative volume fractions of the different solid phases change due to aggregation and breakage.
The second equation in Eq. 4.21 is solved in the multi-fluid model as a set of user-defined
scalars. Finally, note that using Eq. 4.19 the weights w, can be computed from e, and L,
whenever they are needed (e.g., to compute d) during the course of a simulation. Equations 4.4
and 4.21 constitute the DQMOM-multi-fluid model for a polydisperse solid phase. The only

remaining task is to relate d in Eq. 4.12 to the well-known expressions for aggregation and

breakage from the theory of population balances (Ramakrishna, 2000).

4.3 Implementation of Aggregation and Breakage

In this work, we will consider changes in the PSD due only to aggregation and breakage.

For this case, the moment transform of the aggregation and breakage source term is (Marchisio,
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Vigil, and Fox, 2003b)
(N} —a —a —b —t
Sk (x:t) =Bk(x7t) —Dk(x’t) +Bk(x:t) _Dk(x’t): (422)

where the moments of the birth and death rates are defined by

Bi(x,t) = % /D ” fo ” B(L, X) (L3+A3)"/3n(A; x,t)n(L;x,t) dAdL, (4.23)
Do, 8) = f ~ / " LRB(L, Nm(s x, )n(L; x, £) dXdL, (4.24)
By(x,) / / LEa(Mb(L|INn(r;x,t) dAdL, (4.25)
Da(x,t) = /0 Lka(L)n(L;x,t) dL. (4.26)

In these expressions, S(L, A) is the aggregation kernel, which is proportional to the frequency
of collision of two particles with lengths L and A, a(L) is the breakage kernel, which is the
frequency of disruption of a particle of length L, and b(L[A) is the fragment distribution
function, which contains information on the fragments produced by a breakage event.
DQMOM is based on the quadrature approximation reported in Eq. 4.7. Thus, using this
approximation the source term in Eq. 4.22 is closed:
- N N

N N
=N 1
500 (x, 1) = 522%% (L8 + L3300y — 3.5 waw, L& fay

a=1~y=1

—|—Zwaa pk) — ZwaLg oy (4.27)
where foy = B(La, Ly), 6} = a(Lq), and
B = / L¥b(L|Lg) dL. (4.28)
0

As concerns the daughter distribution function, the following expression has been used (Marchi-

sio, Vigil, and Fox, 2003b)

B = k__’z":itb;;f (4.29)
where m and n represent the mass ratios between the two fragments. For example, if m =1
and n = 1 the two fragments have the same volume and thus symmetric fragmentation is

considered. If m # n then fragmentation is not symmetric and a particular case is when
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m > n (or n 3> m) which is known as erosion. In this work, two different values of m and
n have been considered. Most of the simulations were run with m = n = 1, but in Sec. 4.4.4
erosion is also investigated and compared with symmetric fragmentation.

The kinetic theory of granular flow can be applied to derive expressions for aggregation
and breakage kernels in fluidized beds. According to this theory, the number of collisions per

unit volume and time between particles with indices « and «y is given by Goldschmidt (2001)

4 [(O;me+m 1z 9
Na.),:?rwaw.rai,rgm[ (i “’) —g(V-us) : (4.30)

Oay \ T 2Mem.

where mq and m., are the masses of the particles of size L, and L., respectively, o, and 8; are
the average particle size and average granular temperature of the solid mixture, respectively,
and g, is the radial distribution for the mixture. (See Table 4.1 for the definitions of these

parameters.) Thus, the aggregation kernel can be expressed as

4 (Bsma+m, M 2
3 Y
Bay = ‘I’a"'ro'a'rga“r ’:0_‘”’ (ﬁm) - E(V ‘)|, (4.31)
where ¥, is the success-factor for aggregation, which is usually a function of particle temper-
ature, particle velocity and particle position. Likewise, the breakage kernel can be expressed

as
N

N,
* 321
= —tt 4.32
an=T) (4.32)
A=1

where ¥, is the success-factor for breakage. In this work, we will simply assume that ¥, and
Wy, are constant.

If we neglect the divergence of the particle velocity field and assume that particles have
equal density, Eq. 4.31 can be rewritten as

30, 1/2 o/ 1 1 \1/2
50:7 = ‘I'aga’r (p—) (La + L’r) (L_i + L—,a'Y) . (4-3_3)

3
Likewise, Eq. 4.32 can be rewritten as

N 1/2 1/2

N 30 1 1

an, = Uy E WrTax (—i) (Lo + LA)2 (E—?’— + ﬁ) . (4.34)
A=1 Ps o A

These are the kinetic-theory kernels used in the simulations reported in Sec. 4.4.
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4.4 Results and Discussion

The mathematical model described above is incorporated in the multi-fluid CFD code
MFIX, which is a general-purpose hydrodynamic model for describing dense or dilute gas-
solids flows. The SIMPLE scheme and automatic time-step adjustment are used to speed up the
calculation. A second-order spatial discretization method is adopted to increase the accuracy
of the code. Due to the strong coupling between the phases through the drag forces, the partial
elimination algorithm of Spalding (PEAS) is used to handle the interphase coupling (Syamlal,
1998). All of the simulations reported here were run on an Alpha Cluster made up of Compaq
XP1000 workstations. The average time step At for the simulation was approximately 3 x
1074 s.

"Two-dimensional simulations were carried out for a FB reactor. The computational domain
and solid physical properties are reported in Table 4.3. The initial static bed height was
15.9 cm. The gas velocity was 20 cm /s, and the density and viscosity of air at room temperature
were used in the simulation. First, the code was tested with constant aggregation and breakage
kernels and then by using the expressions derived from kinetic theory (Egs. 4.33 and 4.34).
The effect of the number of nodes N has been tested and predictions with N = 2, 3 and 4
have been compared. The comparison was made with the same initial PSD, and thus the
initial conditions have been calculated by using the same set of moments m;, (see Table 4.4)
for all values of N. In order to initialize the fields, starting from the first 2N moments my
(k=0,...,2N — 1) the N weights w, and the N abscissas L, were calculated by using the
PD algorithm (Gordon, 1968; Marchisio and Fox, 2005) and assumed to be homogeneously

distributed in the initial static bed.
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Table 4.3 The computational domain and solids physical properties in the

Table 4.4

simulation.

Computational domain

Width (cm) 10.1
Height (cm) 50.0
Number of grid cells 15 x 50
Cell width, Az (cm) 0.67
Cell height, Ay (cm) 1.0
Particle physical properties

Particle density, ps (kg/m®) 2530
Coeflicient of restitution, e 0.8
Packed bed void fraction, g7 0.38

Initial values of particle diameters (d,,) and solid-phase vol-
ume fractions (£40) for N = 2, 3 and 4 for the same
initial PSD.(m¢ = 32050.825 cm~3, m; = 670.285 cm~2,
me = 15.245 cm™!, m3 = 0.385, my = 1.09 x 1072 cm,
ms = 343 x 107* cm®’ms = 118 x 107° cm®
my = 4.28 x 1077 cm*)

b

Nla=l|a=2|a=3|a=4
2 | 183 356

Particle diameter, dp, {(pm) | 3 | 174 263 409
4 | 171 225 316 420
2 | 0.274 | 0.356

Phase volume fraction, 5 | 3 | 0.196 | 0.229 | 0.205
4 | 0.157 | 0.157 | 0.157 | 0.157
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4.4.1 Constant Kernels

In the first set of simulations, constant aggregation and breakage kernels were used. Thus,
the aggregation kernel ., and the breakage kernel a, were assumed to be independent of
the particle diameter, velocity and other properties. The values of model parameters used in
the simulations are listed in the Table 4.4. Three cases have been invest;igated and compared.
In Case 1, the aggregation and breakage kernels are both set equal to zero. In Case 2, the
aggregation kernel was set equal to 1 x 1075 m?/s, and the breakage kernel to 0.1 s™1. In Case
3, the aggregation kernel was set equal to 1 x 107® m3/s, and the breakage kernel to 1 s~ L.
For future reference, note that Case 2 will be dominated by aggregation, while Case 3 will be
dominated by breakage.

If no aggregation and breakage are present (Case 1), the PSD does not change with time
and the volume-average mean particle size is constant. However, due to the differences in size
between the N solid phases and therefore the difference in the drag force, particle segregation -
by size will occur. Indeed, smaller particles will tend to reside in the upper part of the
bed, whereas bigger particles will tend to stay near the bottom. For Case 2, aggregation is
dominant and the particles become larger and larger, so the volume-average mean particle size
will increase with the time. For Case 3, breakage is dominant_ and the particles become smaller
and smaller, and the volume-average mean particle size decreases with the time. The volume-
average mean particle size in the fluidized bed for these three cases are shown in Fig. 4.1 for
N =2, 3 and 4. Note that the volume-average mean particle size reported here is dga, namely
the ratio between the third moment mg and the second moment my of the PSD. Note that
the results are nearly independent of N for constant aggregation and breakage. There are
significant fuctuations for Case 3, caused by the dilute system resulting from high breakage.

| As already mentioned the DQMOM is based on a presumed functional form of the PSD that
allows us to solve the closure problem and track with excellent accuracy the moments of the dis-
tribution. Moreover, the different delta functions are treated as distinct solid phases. Although
the underlying PSD could be retrieved by a sufficiently large number of moments (Diemer and

Olson, 2002) in what follows we use a volume-fraction versus particle-size diagram to report
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Figure 4.1 Volume-average mean particle size (dzz) for N = 2 (filled sym-
bols), N = 3 (empty symbols) and N =4 (lines).

on the position of the N delta functions. As explained in our previous work (Marchisio, Vigil,
and Fox, 2003b) this can give some insight into the shape of the underlying PSD, although the
real and presumed PSDs share only a fixed set of moments.

The PSD at the middle of the FB bed for Cases 2 and 3 at selected times are shown in
Figs. 4.2 and 4.3, respectively. At time zero, there are four particles with different particle sizes
and the same solid void fraction for both cases. For the aggregation dominated case (Fig. 4.2),
smaller particles aggregate and produce large particles, and the volume fraction for smaller
particles decreases with time. At 15 s, a broad distribution of particle sizes exists in the bed.
For the breakage dominated case (Fig. 4.3), particles become smaller due to breakage. Indeed,
more and more smaller particles are produced due to the excessive breakage. The bed becomes
more dilute with the newly formed smaller particles, and the PSD changes very quickly. Thus
the PSD at different times are quite different.

As discussed in Sec. 4.1, DQMOM was developed from QMOM. By using DQMOM, we do

not need to solve the transport equations for the moments. Nevertheless, information about the
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Figure 4.2 PSD at the middle of the FB at 0, 5, 10 and 15 s for Case 2.
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Figure 4.3 PSD at the middle of the FB at 0, 5, 10 and 15 s for Case 3.
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Figure 4.4 Volume-average normalized moments for Case 2 using N = 2
(filled symbols), N = 3 (empty symbols) and N = 4 (lines).

moments is still valuable. Comparisons of the volume-average normalized moments for Cases
2 and 3 are given in Figs. 4.4 and 4.5, respectively. The normalized moments are calculated
by dividing the volume-average moments by their values at time ¢t = 0:

px(t) = g:((—;))

(4.35)
Some moments have particular physical meaning. For example, mg represents the total particle
number density, whereas ms is related to the total particle area, and mg is related to the total
particle volume. For Case 2, it is possible to see that N = 2, 3 and 4 gives very similar
predictions. In Fig. 4.4, the expected effects of aggregation are observed: the total particle
number density (mng) decreases, as do my and mg, whereas the total particle volume mg3 remains
constant.

For Case 2, strong segregation occurs in the bed while particles are aggregating. Large
particles migrate to the bottom of the fluidized bed and small particles move to the top.
Aggregation continues after segregation and the big particles in the bottom keep aggregating

and getting larger until large regions of the bed become defluidized. This transition is shown

in Figs. 4.6-4.8, where contour plots of the mean particle size d3z at ¢t = 5, 10 and 15 s, using
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Figure 4.5 Volume-average, normalized moments for Case 3 using N = 2
(filled symbols), N = 3 {empty symbols) and N = 4 (lines).

N =2, 3 and 4 are reported. From the plots, we can see that although the mean particle size
das over the whole domain is nearly the same for all N, the contour plots of dsgs at different
time are slightly different. The contour plots for N = 3 and 4 are more similar. Notice that
because the kernels are constant for this case, even after defluidization particles continue to
grow. This artifact can be eliminated by using the kinetic-theory kernels as described below.
For Case 3 it is possible to see from Fig. 4.5 that the evolution of the moments is opposite of
Case 2 (i.e, mg, 1 and my increase). However, as before ms remains constant, since breakage
is also a volume-preserving process. In this case some differences between N = 2, 3 and 4
\a,re detected. The different behavior can be attributed to elutriation of the smallest particles.
Because of the higher breakage rates, some very small particles are produced and depending
on the gas velocity these particles can leave the bed from the top. This strongly affects the
total number of particles myg, but the effect of this loss of particles is less important for mj, mg
and almost negligible for ms. In fact, because the particles leaving the domain are very small,
they represent a very small fraction of the volume of the bed and thus mg does not change

appreciably. For Case 3, no defluidization is observed. In fact, due to the higher breakage
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55 10 s 15s

Figure 4.6 Time evolution of the spatial distribution of the mean particle
size (dgz) for Case 2 using N = 2.
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Figure 4.7 Time evolution of the spatial distribution of the mean particle
size (dsq) for Case 2 using N = 3.
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Figure 4.8 Time evolution of the spatial distribution of the mean particle
size (dgz) for Case 2 using N = 4.
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rates, the volume-average mean particle size dss decreases, and particles are kept well mixed
by the gas flow. Because of the reduction in the mean particle size, the bed expands and the
total particle number density locally decreases, reducing the breakage rate.

Overall, from the constant-kernel cases we can conclude that our numerical implementation
of the DQMOM-multi-fluid model in MFIX works as expected. From a computational point of
view, the additional CPU time needed to include DQMOM is small relative to the total CPU
time needed to solve the multi-fluid model with the same value of IV but without aggregation
and breakage. For example, using four nodes, the additional time for calculating the source
term for DQMOM is only 18%. Regarding the dependence of the results on the number of
nodes used in the quadrature, we find that for the constant-kernel cases reasonably accurate
results can be obtained with only N = 2. This is consistent with our earlier QMOM work
{Marchisio, Vigil, and Fox, 2003b) where it was shown that even for complicated aggregation

and breakage kernels, the errors in the lower-order moments with N < 4 are uniformly small.

4.4.2 Kinetic-Theory Kernels

As noted above, constant aggregation and breakage kernels can not represent the FB reactor
realistically. This problem can be addressed by using the aggregation and breakage kernels
from kinetic theory reported in Egs. 4.31 and 4.32. Simulations have been carried out for
N =2, 3 and 4. The simulation conditions in Table 4.3 were again used for the kinetic-theory
kernels. Two different cases were investigated and compared. In Case 4, the aggregation
success factor ¥, was 0.001 and the breakage success factor ¥; was 0.0001. In Case 5, the
success factors for aggregation and breakage had the same value: 0.001.

In Fig. 4.9 the volume-average mean particle size dso is reported for Case 4. As it is possible
to see, dsp increases with time. Several phenomena occur simultaneously. First, particles begin
to aggregate and, due to their increased size, move to the bottom of the reactor. Particles near
the bottom of the reactor continue to aggregate until defluidization occurs. At this point,
the granular temperature 8 is null and thus the aggregation and breakage kernels are null.

No further particle aggregation (nor breakage) can occur. Although the volume-average mean



76

particle size predicted by using two, three and four nodes are very similar, some difference in
the defluidization dynamics can be observed. Generally speaking, a higher number of nodes
represents the system more accurately, but increases the computational time. For example,
the CPU fime required for running a simulation *&ith N = 4 ig 1.8 times higher than with
N == 3, and 3.4 times higher than with ¥V = 2.

Results for Case 5 are reported in Fig. 4.10. As it is possible to see, also for this case
the volume-average mean particle size predicted by the DQMOM using two, three and four
nodes is very similar. From Cases 4 and 5, we note that the mean particle size distributions
are nearly the same when breakage dominates or when mixing is significant. However, when
segregation is significant, using different values of N produces different results. Nevertheless,
as N increases, the results show closer agreement. In consideration of the computation cost,
simulations with three nodes appears to be sufficient to represent the PSD.

The instantaneous contour plots for the gas void fraction at 6 s using N = 3 for Cases 4
and 5 are compared with Case 1 (no aggregation and breakage) in Fig. 4.11. Tt can be clearly
seen that with aggregation the fluidized bed becomes defluidized and the bed height decreases
compared to no aggregation and breakage (Case 1). Due to the high degree of aggregation,
the particles become larger and the fluidized bed becomes a packed bed. (The void fraction is
near to the maximum packed void fraction.) Only a few bubbles are observed near the top of
the bed. For the case dominated by breakage, the particles become smaller and remain well
mixed. The bed height expands compared to Case 1, and larger bubbles are observed in the

fluidized bed.
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Figure 4.9 Volume-average mean particle size for Case 4.
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Figure 4.10 Volume-average mean particle size for Case 5.
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Figure 4.11 Contour plots of the gas volume fraction at 6 s. a: Case 1. b:
Case 4. c: Case 5.

4.4.3 Effect of the Aggregation Success Factor

The success factor for aggregation ¥, is a very important parameter that affects the PSD
evolution and defluidization dynamics. The role of this parameter has been investigated for
N = 3, and three different values of the success factor ¥, = 0.001, 0.0005 and 0.0001 were
tested. In these simulations, the success factor for breakage ¥, was set to zero. Results are first
compared. in terms of the pressure-drop fluctuations in the gas-solid fluidized bed for different
values of ¥, in Fig. 4.12.- Notice that the pressure-drop fuctuations go to zero when the bed
becomes totally defluidized. The time for defluidization using the success factors reported
above is 6, 11.5 and 50 s, respectively. Results show that an increase in the success factor
causes earlier defluidization of the bed. Moreover, an increase in ¥, causes an increase in the

final mean particle size, as shown in Fig. 4.13.
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Figure 4.12 Pressure drop fluctuations in gas-solid fluidized bed for
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the pressure fluctuations cease when the bed defluidizes.
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Figure 4.13 Effect of the value of the aggregation success factor (¥,) on
the volume-average mean particle size.

4.4.4 Effect of the Fragment Distribution Function

All the simulations above havg been carried out using symmetric fragmentation, but erosion
can also be very important in fluidized beds. Erosion is a fragmentation process which results
in the formation of a small and a big fragment, and thus it is the separation of a small “chip”
from a larger particle. Indeed, different mass ratios can be considered which still belong to
the erosion-type fragmentation mechanism. In what follows the results from Case 5 (where in
Eg. 4.29, m = n = 1) are compared with results obtained under the same operating conditions
but with m = 9 and n = 1 {which implies the formation of a fragment whose volume is
nine times smaller than the volume of the other fragment) using N = 3. Figure 4.14 shows
a comparison between symmetric fragmentation and erosion for the volume-average mean
particle size. Results show that erosion causes a delay in the dynamic response of the mean
particle size. This is due to the fact that erosion is a less effective breakage mechanism in the
presence of aggregation. With symmetric fragmentation particles reduce their volume by a
factor of two, whereas with erosion a large particle generates a small fragment and a second

fragment which has nearly the original volume.
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Figure 4.14 Effect of symmetric fragmentation versus erosion on the vol-
ume-average mean particle size.

It is interesting to note that with erosion another phenomenon can occur. The small
fragments generated in the erosion process become smaller at a faster rate than with symmetric
fragmentation and in a finite time an infinite number of particles with null size can be generated.
This phenomenon goes under the name of shattering and can be detected by a net loss of mass.
In Fig. 4.15, the three volume-average abscissas L,, volume fractions £4, and weights w, are
feported for symmetric fragmentation and erosion. As it is possible to see, with erosion the
smallest class Ly become null in a finite time (about 12 seconds) and the corresponding volume
fraction €51 becomes zero. The corresponding weight w; should become infinite but since the

equation are not directly solved for wq, it tends to zero instead.

4.5 Conclusions

Simulation resuits show that the DQMOM-rmulti-fluid model is an effective approach to rep-
resent the evolution of the PSD due to aggregation and breakage in FB reactors. Two different
sets of aggregation and breakage kernels were tested. For FB reactors, the kernel developed

from kinetic theory should be more accurate then the constant kernel. With the kinetic-theory
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Figure 4.15 Comparison between symmetric fragmentation (solid lines)
and erosion (dashed lines). a: abscissas. b: solid volume
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kernel, the mean particle size stops increasing when the fluidized bed becomes totally defluidiza-
tion. Nevertheless, botlh kernels can describe the phenomena of particle growth, segregation,
and elutriation due to aggregation and breakage. The performance of the DQMOM-multi-fluid
model using two, three and four nodes has been tested. Results show that model predictions
are very similar for N = 2-4. However, for some cases, using three or four nodes produces
similar results, which are different than those found with two nodes. Considering the increase
in computational time with an increasing number of nodes, three nodes appears to be a good
choice for representing FB reactors. The effect of the success factor for aggregation ¥, was
investigated for the kinetic-theory kernel. As expected, a high success factor ¥, leads to a
shorter time for reaching complete defluidization.

For modeling real systems, several additions features (e.g., heat and mass transfer, chemical
reactions, etc.) must be added to the CFD model proposed in this work. However, the
concéptual framework of the DQMOM-multi-fluid model need not be changed to accommodate
these additional features. In other work, we apply the CFD modeling approach developed in
this work to FB poly-olefin reactors used to produce high-density polyethylene as well as
other polymers. For these reactors, the formation of hot spots can lead to aggregation of the
polymer particles and eventually to reactor shutdown. For this reason, the ability to describe
polydisperse, aggregating particles is a central requirement of any CFD model for ¥B poly-
olefin reactors. The DQMOM—‘multi—ﬂuid model developed here provides a computationally

efficient and robust method for attaining this objective.
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CHAPTER 5. SEGREGATION IN POLYDISPERSE FLUIDIZED BEDS:
VALIDATION OF A MULTI-FLUID MODEL

5.1 Introduction

Fluidized bed reactors have been widely used in the food, chemical, pharmaceutical and
metallurgical industries. The process of particle mixing and segregation change the distribution
of mixture components in the bed, and thus play a very important role. For example, in a
catalytic gas-phase olefin polymerization reactor, small catalyst particles are continuously fed
into the bed, and react with the incoming monomer gas to produce a broad size distribution
of polymer particles. Due to the differences in the polymer particle sizes, segregation occurs
and fully-grown polymer particles migrate to the bottom where they are removed from the
reactor. Meanwhile, the smaller pre-polymerized particles and fresh catalyst particles tend to
migrate to the upper portions of the reactor and continue to react with monomer. Bubbles are
known to play an intricate and ambiguous role in the reactor. On the one hand, bubbles cause
segregation of larger particles. On the other hand, the rising bubbles also provide a mixing
action to equalize the particle size and density distribution (Wu and Baeyens, 1998). Both the
chemical reaction and mass/heat transfer depend on the local particle size distribution in the
bed. Therefore, a hetter understanding of the distribution of different solid components for a
given mixture system is required to improve the design, operation and scale-up of gas-fluidized
bed processes.

An extensive literature has been published on the segregation and mixing behavior of par-
ticles of different sizes and densities in fluidized-bed reactors. Attentions has been focused
mostly on segregation in gas-solid fluidized beds with binary mixtures (i.e., two particles dif-

fering in size and/or density) (Nienow et al., 1987; Formisani et al., 2001; Hoffmann et al,,
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1993; Goldschmidt et al., 2003). Marzoccella et al. (2000) experimentally studied segregation
behavior and transient fluidization of binary mixtures of particles in a bubbling fluidized bed.
.A defluidized bottom layer was observed in a segmented fluidization column. The fluidization
behavior of rice husk-sand mixture in a biomass fluidized bed was studied by Sun et al. (2005).
The distribution of mass fraction of rice husk particles along the bed height were measured,
the profiles of the mean particle diameter of the mixture were determined. With the increasing
computer power, simulation studies of segregation in gas-solid fluidized beds with binary mix-
ture have been conducted (van Wachem et al., 2001; Cooper and Coronella, 2005; Feng et al.,
2004). Lu et al. {2003) used an Eulerian-Eulerian approach to simulate the segregation pat-
terns of a binary mixture differing in particle size with the same density. In their model, both
the gas phase and solids phase are interpenetrating continua. Separate transport equations are
used for each particle class, allowing for interactions between size classes. For smaller fluidized
bed systems, a more detailed discrete particle simulation (DPS) has been used to describe the
dynamic behavior of a polydisperse mixt-ure of particles (Hoomans et al., 2000; Bokkers et al.,
2004). In this Eulerian-Lagrangian model, each particle is tracked individually by Newton’s
second law of motion, the gas phase is computed by solving the volume-average N;&vier-Stokes
equations. The particle collisions are described by a hard-sphere or a soft-sphere model and
no additional closure equations are needed for the interaction forces between particles.
Although many experiments and simulations were conducted for binary systems, many
industrial fluidized beds contain particles with continuous size distributions, and the experi-
mental and simulation works on this subject are few. Hoffman and Romp (1991) performed
experiments in a gas-solid fluidized bed with a continuous size distribution ranging from 150 to
1000 4sm. They noticed that the intermediate size particles behaved as jetsam (larger particles)
at lower velocities and flotsam (smaller particles) at high velocities. Similarly, Wormsbecker
et al. (2005) studied a bimodal distribution of pharmaceutical granulate mixtures in a conical
fluidized bed. Both axial and radial segregation are observed in the bed. Large granule tended
to accumulate at the center of the bed and became better mixed as the gas velocity increased.

Only a few researchers reported simulation work on the segregation in gas-solid fluidized beds
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with a continuous size distribution. Mathiesen et al. (2000) studied the flow behavior in a
circulating fluidized bed by approximating a realistic particle size distribution as three discrete
particle sizes. An Eulerian-Eulerian model was used in the simulation and axial segregation
was observed for a wide-ranging particle size distribution, and no segregation for a narrow size
distribution.

More recently, Dahl and Hrenya (2005) used a discrete-particle model to study the segrega-
tion phenomena in gas-solid fluidized beds with a continuous size distribution. Both Gaussian
and lognormal distributions were investigated over a range of distribution widths and gas ve-
locities. The simulations show that the local distribution remains of the same type as the
overall particle size distribution with a few notable exceptions. However, due to the computa-
tional cost of the method, the results are limited to low-velocity, small fluidized beds. Thus,
developing an Eulerian-Eulerian model, which can describe the segregation and mixing for a
continuous PSD is very crucial for larger industrial-scale fluidized beds. In this work, the re-
cently developed DQMOM is incorporated in the Eulerian-Eulerian model frame to represent
the PSD by a finite number of nodes (Fan et al., 2004). The PSD is tracked through the
moments, not the actual nodes, so only a few nodes are enough to represent it. In order to
validate the model we employed in this work, the results of the model are first compared with
experiments performed by Goldschmidt et al. (2003) for a binary mixture. Then, the results
for the continuous PSD are compared with the DPS simulation results of Dahl and Hrenya

(2005).

5.2 Multi-Fluid Model Description

In this Work,'the multi-fluid model (MFM) based on the Eulerian-Eulerian approach is
employed to describe particle segregation in a fluidized bed. In the model, both the gas phase
and solid phases are described as interpenetrating continua. The gas phase is considered as
the primary phase, whereas the solid phases are considered as secondary or dispersed phases.

Each solid phase is characterized by a specific diameter, density and other properties.
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The continuity and momentum equations for the gas and solid phases are

ANegp
—-%’f-l + V - (ggpgug) = 0, (5.1)
Nesase
% + V - (€saPsallsa) = 0, (5.2)
a N
En (egpgug) + V - (egpguguy) =V - oy + Z foo + €908, (5.3}
=1
6 N
'a'“i‘ (Esapsausa) +V. (Esapsausausa) =V - 04— fga + Z fﬁa + EsaPsaE. (5-4)
A=1,p#c

All the variables are same as described in Sec. 3.1 and a simple Newtonian closure is used for
the gas-phase tensor. The kinetic theory of granular flow and the theory from the study of soil
mechanics are combined to calculate the solid stress tensor in the viscous and plastic regimes.
The constitutive relations for the gas and solids stress tensor are summarized in Table 5.1. A

more detailed discussion about the parameters can be found in Sec. 3.1.

The interaction forces between phases (both solid and gas phase and solid-solid phase) are
very crucial to model the segregation and mixing phenomena in the reactor. The interaction

force between the gas phase and the o' solid phase, 40, can be written as
foa = —€5a VP — Fga(Use — ug). (5.5)

The first term on the right hand side of Eq. 5.5 describes the buoyancy force, and the second

term is the drag force. The drag model derived by Gidaspow (1994) is used here, and

150%eliopolie 4 1 75Seapaliamtienl g . < 08
Foo = P (5.6)
el Esapgsdg:;g—u—m_! g5 26 ife, > 0.8
and
22 (14 0.15Re%087)  if Re,, < 1000
OD = Repa e P (57)
0.44 if Repe > 1000
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Table 5.1 Constitutive relations for gas and solids stress tensors.
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where
Repo = Egpg’ug - usaldpa/ﬂg- (5.8)

The interaction force between the 5" solid phase and o'! solid phase, £ Ba, 18 written as

fﬁa = —Fﬁa(um b usﬁ) (5.9)
with

2
Fo = 3(1+e) (7/2 4 Crpan?/8) csppspesaPsa (Apg + dpa) 90paUsp — Usol + CiP* (5.10)

27 (psﬁdgg + Psadga)

where go_, is the radial distribution function at contact, and

1 3dpadps <= Es)

—+ c 5.11
Eg 63 (dpa + dpﬁ) =1 dpA ( )

90g. =

The first term on the right-hand side of Eq. 5.10 was derived by Syamlal (1987) from
kinetic theory accounting for the momentum transfer between the solid phases due to the
collisions and sliding. e and Cyg, are the coefficient of restitution and coefficient of friction
between particles. During the recent study done by Gera, Syamlal, and O’Brien (2004), it
was found that a new term (the second term in the interaction force) is required to account
for the “hindrance effect”, otherwise the two solid phases will segregate even when they are
packed or at low velocities. It is because when we consider the solid phases as two distinct
phases, the small particles can go through the interstices of the packed bed, but in reality they
do not experience any buoyant force from solids pressure gradient and actually behave like a
single solid phase, so no segregation happens. Thus, an arbitrary function C;P* that makes
the particle-particle drag sufficiently large is added, and this force accounts for the “hindrance
cffect” so that the two solid phases will move together and, in effect, behave as one phase when
they are packed. The “hindrance pressure” is defined as

1025 (e — )10 ife, < g
P = ¢ T (5.12)

0 if g > g
and C; is adjusted to different mixtures to match the actual segregation rate. In the systems

we studied, a value of 0.3 was found to resemble the experiment data for all cases investigated.
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5.3 Results and Discussion

5.3.1 Binary PSD

The Eulerian-Eulerian model described above is incorporated in an open source CFD code
MFIX. The MFIX code employs a staggers finite-volume mesh system. To speed up the code,
the SIMPLE scheme and automatic time-step adjustment are used (Syamlal, 1998). For all the
simulations, a second-order spatial discretization method is used to improve the accuracy of
the calculation. The model is first validated with the experiments conducted by Goldschmidt
et al. (2003) for a binary mixture. The experiments were carried out in a 15 cm wide, 70 cm
high, 1.5 cm deep pseudo two-dimensional gas fluidized bed, and the initial bed height was
15 em. The particles used in the experiment are relatively large spherical glass beads, which
qualify as Geldart D type particles. Three different cases are selected for the simulations.
The bed compositions (ratic of mass fraction of small particles Zgmay to large particles Tiarge),
superficial gas velocities and solid void fractions for small and large particles are summarized
in Table 5.2. Two-dimensional simulations assuming no gradient exist in the third direction
were carried out for a free-bubbling fluidized bed. The width of the simulated bed is 15 cm
and the height is 50 cm. The computational grid consisted of 30 x 80 rectangular cells. The
properties of solid phases are st in Table 5.3.

In order to compare the simulation results with experimental data obtained from Gold-
schmidt et al. (2003), the average height of solid phases, (hq) (=small or large), is defined

a5
Zcell Ea,cellhcell
Zceli Ea,cell

The relative segregation rate is calculated from the average bed height for small and large

(ha) =

(5.13)

particles and has the form of

§—-1
5 = m (514)

where § = (Rgmau)/{Piarge) a0td Smaz = (2 — Tsmait)}/(1 — Tsman). The relative segregation
rate s = 0 when the particles are perfectly mixed, and s = 1 when the particles are completely

segregated.
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Table 5.2 Different cases simulated with Eulerian-Eulerian model

msmall/mlarge Ug Esmall  Elarge
Base case  0.25/0.75 1.20m/s 0.145 0.435
Case 1 0.50/050 110m/s 029 0.29
Case 2 0.50/0.50 1.25m/s 029 0.29

Table 5.3 Properties of solid phases used in the Eulerian-Eulerian simula-

tion.
small particle larger particles
Particle density, ps 2526 kg/m® 2526 kg/m®
Particle diameter, d, 1500 pm 2500 pm
Coeflicient of restitution, e 0.97 0.97
Coefficient of friction, Cf 0.15 0.15
Minimum fluidization velocity 0.78 m/s 1.25 m/s

The base case has 25% small particles and 75% large particles, and the superficial velocity is
1.20 m/s, which is between the minimum fluidization velocity for the small and large particles.
The relative segregation rate calculated from average bed height from the Eulerian-Eulerian
simulation is compared with experiments in Fig. 5.1. The simulation follows the trend well and
the particles are well-mixed at the beginning, the relative segregation rate is small, close to
zero. When segregation happens, the small particles moves to the top and the large particles
move to the bottom of the bed, the relative segregation rate increases slowly. At 30 s, the

value is around 0.4.
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Figure 5.1 Evolution of relative segregation with time for base case.
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5s 10s 15s 30s

Figure 5.2 Snapshots of the void fraction of large particles from simulation
for case 1.

Figure 5.3 Snapshots of the void fraction of large particles from simulation
for case 2.

Two other cases were chosen to study the effect of superficial gas velocity and the mixture
composition. Case 1 has a different bed composition than the base case. It consists of 50%
small particles and 50% larger particles, and the superficial gas velocity is 1.10 m/s. Case 2
has the same bed composition as case 1 but with a higher superficial gas velocity, 1.25 m/s.
The snapshot of void fraction of large particles for cases 1 and 2 at 5, 10, 15 and 30 sec are

shown in Figs 5.2 and 5.3. For case 1, a layer of jetsam (larger particles) is formed at the
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bottom of the bed due to segregation. Bubbles are only observed near the top which is rich in
small particles. Due to the accumulation of the large particles near the bottom, the bottom of
the bed defluidized with time. For case 2, it is clearly seen that no layer of jetsam is formed
at the bottom, only a few big particles accumulate around the corners. The higher superficial
gas velocity produces more larger bubbles, and the bed is well-mixed with a higher bed height
than case 1.

The evolution of the relative segregation rate in time for cases 1 and 2 are compa;red with
experiments in Fig. 5.4. The simulation slightly overpredicts case 1 for the first 10 sec, but
overall the prediction is reasonably good. Compared to case 1, the simulation for case 2
resembles the experiment results much better. From these two cases, we can conclude that the
simulations can capture the transient fluidization, segregation and mixing of binary mixture
of particles. In an intermediate gas-velocity range, transient fluidization takes place where the
bed is initially fluidized and then segregation gradually occurs. In the end, the larger particles
go to the bottom and the small particles move to the top so that there is a defluidized bottom
rich in jetsam and a top layer rich in flotsam (small particles). The relative segregation rate
is higher (usually around 0.3-0.4). At high gas velocity {equal or higher than the minimum
fluidization velocity of larger particles), the fluidized bed is fully fluidized, so that effective bed
mixing overtakes defluidization at the bottom and the segregation rate is rather low (smaller
than 0.1).

The granular temperature is a key parameter in the Eulerian-Eulerian model, and it mea-
sures the small-scale fluctuating random motion of the particles in the fluid. The volume-
{raction-weighted, bed-averaged granular temperatures as a function of time for cases 1 and 2
are shown in Fig. 5.5. The simulation results show that, for both cases, the granular temper-
ature of the small particles remains nearly the same, with small fluctuations. For case 1, due
to the segregation, the larger particles move to the bottom of the bed and since the superficial
gas velocity is lower tha.ﬁ the minimum fluidization velocity of the large particles, the bottom
part of the bed defluidized. The granular temperature of the larger particles decreases with

time. For case 2, the superficial gas velocity is equal to the minimum fluidization velocity of
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the large particles, and the bed is well-mixed. No defluidization is observed in case 2. The

statistics of granular temperature for the larger particles also remain constant.

5.3.2 Continuous PSD

After attaining good agreement with experiments for binary systems, segregation phenom-
ena in gas-solid fluidized beds with a continuous PSD were investigated. The simulation results
are compared with the DPS results of Dahl and Hrenya (2005). As in their work, the simulation
is conducted in a small two-dimensional rectangular fluidized bed, the width of the bed is 0.1
m and the height is 0.5 m. The density of the particles is 2525 kg/m?. For all the DPS simula-
tions, at time zero the particles are released and allowed to fall under the influence of gravity
and gas-solid drag. At a specific start tim(;,, tstart= 0.1 s, the gas uniformly flows through the
bed from the bottom. The gas velocity is linearly increased until the point (£5,:=0.15 s) where
a desired gas fluidization velocity is achieved. Then the simulation proceeds through time
until the target simulation time (% ing;=30 s) is obtained. In the Eulerian-Eulerian model, the
simulations start with a well-mixed bed, at time zero the gas is uniformly distributed at the
bottom of the bed with the desired velocity, and the simulations run to 30 s, and the last 10
seconds were used to get the average particle diameter and standard deviation for comparison
with the DPS simulations. For the gas phase, air is used. The density of gas is 1.28 kg/m®
and the viscosity is 1.7 x 107° kg/m-s.

Four systems were chosen for the comparisons. The overall size distribution, ratio of the
standard deviation (o) of the PSD to the mean particle diameter (dgye), coefficient of resti-
tution (e), coefficient of friction (C}), the superficial gas velocity (n,) and the root mean
square diameter {drms) are listed in Table 5.4. One thing noticed in the table is that different
superficial velocities were used from Dahl and Hrenya’s work (2005). This was because the
DPS simulation used in their work were a strictly two dimensional (2D) simulation. However
Eulerian-Eulerian model is a three dimensional (3D} simulation, and the particles were as-
sumed to be packed in a 3D unit cube, compared to DPS simulation, where the particles were

packed in a 2D hexagonal lattice. In the DPS simulations, this effect was taken into account by



97

Table 5.4 Simulation system properties.

System PSD ofdwe €  Cf ug(m/s)  dpps (um)
1 Gaussian 0.3 0.95 0.15 0.80 (1.00)* 1000
2 Gaussian 0.3 095 0.15 1.00 (1.25)* 1000
3 Gaussian 0.1 095 0.15 0.80 (1.00)* 1000
4 Lognormal 0.5 0.99 001 1.0 (1.25)* 1000

*superficial gas velocity used in DPS simulation

transformation between 2D gas-phase void fraction and 3D gas-phase void fraction (Hoomans
et al., 1996):
(1 —eyp)ts (5.15)

2
gzap=1-—-
w V3

However, it is an equation derived for monodisperse particles. During the work, it was found
that the superficial gas velocity had to be reduced to 80% of the velocity used in the DPS
simulation to match the minimum fluidization velocity for a mixture with continuous PSD in

Eulerian-Eulerian simulations.

In the Bulerian-Eulerian model, the recently developed DQMOM is used to represent the
continuous PSD by a summation of Dirac delta function (Fan et al., 2004). The distribution is
approximated by a number of specific particle size classes, and tracked by the development of
the moments. According to the previous work (Fan et al., 2004), only a few (3 or 4) size classes
are needed to represent the PSD, so this method has a significant advantage over conventional
methods, such as the sectional method, on the computational cost.

For a Gaussian distribution with a wide distribution ¢/dge = 0.3 (System 1), the jt*
moment, m;, can be calculated as (Randolph and Larson, 1971)

13— = 1)
(7 —r)ir!

m‘? = Z Jj—r(daue)

T

r=0,2,4,--- 7 for j even (5.16)

r=1,3,5,---,7 for j odd.
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Table 5.5 Particle diameters and weights for System 1 with N =2 —4

N a=1 ao=2 a=3 a=4
2 670 1245

3 460 958 1456

4 287 745 1171 1629
2

3

4

Particle diameter dpo, pm

0.5 0.5 :
0.1667 0.6666 0.1667
0.0459 0.4541 0.4541 0.0459

Weights w,,

 According to DQMOM method, the moments can be approximated by quadrature:
w . N ]
m;(x,t) = f n(L;x,t) L7 dL = Zwab’é, (5.17)
0 a=1
By using the product difference(PD) algorithm (Gordon, 1968), the particle diameter {Lq or
dpa, @ =1,---, N} and weights (w,) can be obtained from the first 2N moments. For System

1, with N = 2 — 4, the corresponding particle diameters and weights are listed in Table 5.5.

From the DPS simulation, the fuidization behavior of the mixture can be best described
as low-energy bubbling, the bed height only increases from 5 to 6.5 cm. The segregation
phenomena can be clearly seen for System 1. The normalized mean diameter of the local size
distribution (scaled by the mean diameter of the overall size distribution, daye overall) 2long the
bed height were calculated and compared with DPS in Fig. 5.6 using 2-4 nodes. The DPS
results shows that, near the left wall (z=0.5 cm), the segregation is.not very noticeable, the
normalized mean diameter is around 1.0. The segregation in the interior of the bed (2=2.5 cm
and 4.5 cm) was much stronger, the normalized mean diameter decreases with increasing height.
However, the \Eulerian-Euleria,n model gives slightly different results. The segregation is very
strong at all points in the bed, either near the wall or inside of the bed. Due to segregation,
at the bottom of the bed, the normalized mean diameter is large with a value of 1.4. Near the
top of the bed, the normalized mean diameter is small with a value of 0.6. For the effect of

nodes number, If two nodes are used, the bed height is slightly higher than using three nodes
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and four nodes. Thus the mean diameter at the top of the bed is slightly larger than the DPS
simulation.

The standard deviation (o} of the local size distribution (scaled by the standard deviation
of the overall size distribution, goyeran) along the bed height for System 1 was also computed
and compared with DPS simulations in Fig. 5.7. Also some differences can be observed in the
comparison. The DPS simulation shows that the standard deviation for each curve is different,
only near the left wall, the normalized standard deviation decreases with the height, and then
stays around 1.0. For other two curves (z=2.5 cm and 4.5 cm), the normalized standard
deviations are lower than 1.0. However using the Eulerian-Eulerian model, it can not simulate
the lateral segregation across the bed, the curves are the same for all three locations (near the
wall and inside of the bed}. Notice in the graphs, if two nodes are used, the normalized standard
deviation is 1.0, which means the local distribution are identical to the overall distribution.
It shows representing the continuous PSD by two nodes are not adequate, as it can not catch
the difference between local distribution and overall distribution. With the increase of the
number of nodes, for all three locations, the normalized standard deviation decreases from 1.4
to around 1.0. The local distribution are different at different locations. A wider distribution
near the bottom, and a narrow distribution near the top of the bed.

If we plot the normalized mean diameter and standard deviation of the local size distribution
across the bed (Figs. 5.8 and 5.9), the difference between Eulerian-Eulerian model and DPS
simulation are more easily observed. As we can see, DPS simulation shows there is lateral
segregation at the bottom (y=0.5 cm) and at the top of the bed (y=6.5 cm). Larger particles
tend to accumulate rin the middle of the bed, and less large particles are found near the wall.
The average particle diameter doesn’t change with the height, and not much axial segregation
is observed near the wall. However inside of the bed (y=2.5 ¢cm and 4.5 cm), no lateral
segregation is observed, and the normalized mean diameter across the bed remains constant,
same as the overall mean diameter in the bed. For the Eulerian-Eulerian simulation, even if
we increase the number of nodes, the lateral segregation at the bottom and top of the bed

can not be observed. The normalized mean diameter remains constant across the bed at all
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locations (y=0.5, 2.5, 4.5 and 6.5 cm). So axial segregation is found everywhere, even near the
wall. The same phenomena can also be found in Fig. 5.9 and there is no difference in standard
deviation across the bed.

The reason that current model can not catch the lateral segregation is probably because
that the current kinetic theory model assumes the collisions are binary and quasi-instantaneous
and neglect the long-term and multi-particle contacts. However, in regions with high particle
volume fraction, such as near the wall or the corner, frictional stresses are more important.
There are more particle-particle and particle-wall contact and the flow behavior is effected by
the frictional model at high solid volume fractions. Due to neglect of the frictional stresses,
the Fulerian-Eulerian is not able to catch the less segregated region near the wall and shows
no difference at near the wall and inside of the bed. We believe DPS with a periodic boundary
condition (ignoring the wall effect) would give more similar results for DPS and the Eulerian-
Eulerian model.

Even though the above system is a low-energy fluidized bed, a significant segregation along
the height is observed from both simulations. According to the simulations and experiments
for the binary system, increasing the gas flow rate will lead to better mixing and produce
more bubbles. Segregation will be overtaken by the mixing, and segregation phenomena will
no longer exist. Thus, the effect of the superficial gas velocity is studied in System 2, which
has the same properties as System 1, but with a higher superficial gas velocity uy, = 1.0 m/s
(1.25 times of the gas velocity of System 1). The normalized mean diameter of the local
size distribution along the bed height for System 2 using 2-4 nodes are compared with DPS
simulation results in Fig. 5.10. Compared with Fig. 5.6 (System 1), both DPS simulation and
our simulation shows that the segregation along the height is greatly reduced, segregation only
happens at the very bottom of the bed, and the normalized mean diameter at the bottom is
only around 1.1, smaller than the one observed in System 1. Also notice that, increasing the
number of nodes doesn’t change the results very much. With better mixing, two nodes are
enough to represent the whole system.

The third system (System 3) has the same properties as System 1, but with a narrow
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Gaussian distribution, the ratio of the standard deviation of the particle size to the mean
particle size ¢ /dgy. reduces to 0.1. Since the particle size distribution changed, the moments
are different, and the corresponding particle nodes for System 3 are different. With a narrow
distribution, the variance between particle diameters for each node is smaller, less segregation
is expected. The mean diameter of the local size distribution along the bed height doesn’t
change, same as the overall diameter. The local distribution is same as the overall distribution,
no axial and lateral segregation are observed along the bed height and across the bed. Similar
to System 2, when the distribution is narrow, better-mixed is achieved, and less nodes need to
be used in DQMOM.

After the analysis of segregation and mixing phenomena in a Gaussian mixture, a study for
the effect of the distribution was also conducted. Since log-normal distributions are common in
industrial fluidized beds, a log-normal distribution with ¢/day. = 0.5 {(System 4) was studied.
Similar to System 3, the particles are slightly elastic (e = 0.99) and less frictional (C¢ = 0.01).
Due to the long tail of the lognormal distribution, the maximum particle size is almost 3 or 4
times of the average particle size, so the minimum fluidization velocity for System 4 is higher
than System 1. Thus the superficial gas velocity increases from 0.8 m/s to 1.0 m/s.

The 7** moment of the log-normal distribution can be gotten from equation (Randolph and
Larson, 1971):

. -2
m; = (dave)Jexp(%a2) (5.18)

By using PD algorithm, the corresponding weights and particle diameters that represent Sys-

tem 4 with nodes from 2 to 4 are listed in Table 5.6.

The normalized mean diameter and standard deviation of the local size distribution along
the bed height for System 4 are calculated and compared in Figs. 5.11 and 5.12. According
to the simulation, due to the bigger particles in the tail for the log-normal distribution, the
segregation is much stronger. The bigger particles quickly move to the bottom of the bed, and

then the bed defluidized at the bottom, and a stagnant layer forms with the average mean
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Table 5.6 Particle diameters and weights for System 4 using N =2 — 4.

N a=1 a=2 a=3 a=4
2 682 1834

3 584 1398 3347

4 527 1193 2558 5794
2 0.8148 0.1852
3
4

Particle diameter dpe, pm

0.6375 0.3544 8.1x1073
0.5134 0.4549 0.0315 2.0x10~*

Weights w,

particle size rather-large, around 2.0 times of average particle size for the whole bed. The
Eulerian-Eulerian simulation shows that two nodes are not enough to represent the continuous
particle size. If two nodes are used, the node, which has the large particle diameter, accumulates
at the bottom and another node, the smaller particles, moves to the top. The tﬁo nodes become
completely segregated and form two layers in the simulation. The normalized average particle
size suddenly drops from 2.0 to 0.5, not a smooth curve as showed in DPS. Thus more nodes
are needed to represent the lognormal distribution. With the increase of the nodes to N = 3 or
N = 4, the Eulerian-Eulerian model agrees with DPS better. The mean particle size gradually
decreases with increasing height. Also notice in Fig. 5.11, the DPS simulation shows there
is lateral segregation near the bottom. Same as in the previous simulations, the Eulerian-
Eulerian model can not catch the lateral segregation for System 4. The variation of the mean
diameter and standard deviation of the local size disiribution across the bed for System 4
are also shown in Figs. 5.13 and 5.14. The difference between DPS and Eulerian-Eulerian
model is more easily observed in these two figures. For Eulerian-Eulerian model, all the curves
are almost horizonal lines, with a little fluctuation at the top of the bed. In contrast, DPS
- simulation showed lateral segregation at the bottom of the bed (the curve for y=0.5 cm), the
larger particles tend to accumulate in the middle of the bed. Note that using either N=3 or 4

yields acceptable agreement with DPS results.
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5.4 Conclusions

An Bulerian-Eulerian model for polydisperse fluidized beds was studied for a binary system
and a few systems with continuous PSD. The simulations for the binary system were compared
with the experiments conducted by Goldschmidt et al., and the model reproduced the segre-
gation and mixing phenomena in the binary mixture experiments. When the superficial gas
velocity was low, smaller than the minimum fluidization velocity for the large particles, segre-
gation occurred, the larger particles moved to the bottom and the small particles moved to the
top, formed a layer of rich in jetsam at the bottom, the fluidized bed defluidized at the bottom.
‘When the superficial gas velocity was equal to or larger than the minimum fluidization velocity,
.more bubbles were observed in the bed, and better mixing was achieved. The segregation in
the bed was greatly reduced, and the segregation rate was very low, around 0.1.

Many industrial fluidized beds contain particles with continuous PSD, thus segregation
and mixing phenomena for a continuous size distribution were also studied. The first three
systems had a Gaussian distribution. System 1 had a wide distribution with o/dge = 0.3
and System 2 has the same distribution as System 1 but with a higher superficial gas velocity.
Systemn 3 had a narrow distribution with ¢/dgye = 0.1. The last system (System 4) had
a log-normal distribution with ¢/ds,. = 0.5. As expected, the wide Gaussian distribution
showed more segregation than the narrow one, and the lognormal distribution showed the
greatest segregation. Increasing superficial gas velocity generated more bubbles, better mixing,
and reduced the segregation. The simulation results were compared with DPS simulations
conducted by Dahl and Hrenya, and showed that the Eulerian-Eulerian model can reproduce
the segregation along the bed height, but can not reproduce the lateral segregation across
the bed observed in DPS simulations. In the simulations, DQMOM is used to represent the
underlining distribution, the effect of the node numbers was also studied. The results showed
that, when the distribution was narrow or the superficial gas velocity was high, the mixing
dominated the segregation, and less nodes were needed. For a wide distribution with strong

segregation, at least three nodes were needed to represent the distribution.
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along the bed height for System 1.
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CHAPTER 6. COMPUTATIONAL FLUID DYNAMICS MODELING
. OF UNIPOL GAS-PHASE REACTORS

6.1 Introduction

Polyolefins, especially PP and PE, have become the most popular resins due to the merit
of low price, flexibility of molding and ease of disposal‘ or recycling (Kaneko, Shiojima, and
Horio, 1999). Based on production data for 1999 and 2000, 85-95 million tons of polyolefins
are produced around the world. This already impressive market is still in full growth, Foxely
(1998) predicted that the growth rates is about 30% for PP and about 18% for PE products
for the period from 2000 to 2005. Nowadays, most polyolefin polymerization processes are
executed in a liquid- or gas-phase reactor or a combination of both. Because there is no need
for drying and separation of olefins from solvents, a gas-phase process is more advantageous
than conventional liquid slurry processes. For the gas-phase process, four reactor types com-
mercialized so far are the fluidized bed type (UNIPOL process), the vertical stirred-bed type .
(NOVOLEN process), the horizontal stirred-bed type (AMOCO process) and multizone circu-
lating reactor type (Basel process). The use of a gas-fluidized bed with its inherent excellent
mixing and heat-transfer characteristics is a major strength of gas phase processes such as the
UNIPOL process. the UNIPOL process. The UNIPOL process has been licensed extensively
with over 100 reactor lines in 24 different countries comprising approximately 17,000,000 met-
ric tons of PE capacity. As such it represents 25% of global PE capacity. The UNIPOL PP
process have been implemented in 15 countries, on six continents. There are over 30 reactor
lines using UNIPOL PP in operation worldwide with a production capacity of over 5 million
tons per year (Burdett et al., 2001).

Although the gas phase process has been commonly employed in the production of PE
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since 1980s, some inherent features of the process remain as a challenge for an engineering
breakthrough. One of the main problems in gas-solid fluidized beds, not only for PE but other
processes as well, is particle agglomeration (Mckenna and Soares, 2001). Two main factors
contribute to the agglomeration in the bed, one is the “hot spots” formed in the bed and
another is the electrostatic charge. In nature, olefin polymerization is a highly exothermic
reaction. The temperature of the polymer particles tend to rise and sometimes it will exceed
the melting point of the polymer (usually <430K). If the heat removal is poor, local “hot spots”
are formed and the hot spot becomes a nucleus for polymerization at a much more rapid rate.
Then the particles can melt and stick together to form bigger particles or fuse into a sheet
or large chunk. On the other hand, when polymer particles are fluidized within the reactor,
electrostatic charges are generated from surface charge polarization and separation due to
friction among gas, particles and reactor walls (Park et al., 2002). When two particles {or
particle and reactor wall) with dissimilar electrical charge meet, they are attractive to each
other and form loose agglomerates. The electrostatic force induced by these charges can change
the hydredynamics of gas-solid fluidized bed and more importantly unintentional accumulation
of electrostatic charges can lead to fused particle agglomerates. This is a major problem for
commercial-scale processes since it interferes with the performance of the reactors. In extreme
cases this can lead to FB reactor defluidization, and then the whole process needs to be shut
down.

Many people have investigated the particle overheating and electrostatic charge in the flu-
idized beds. Several models of a single polymer particle for olefin polymerization on supported
catalysts were developed in recent years to study the particle overheating, such as a simple
steady-state model of the non-growing particle by Hutchinson and Ray (1987); polymeric-flow
model used by Schmeal and Street (1971), Hoel et al. (1994) and Veera et al. (2002); more
sophisticated multi-grain models developed by Floyd et al. (1986), Hutchinson et al. (1992)
and Debling and Ray (1995); and a novel, simple lumped-t;,hermal model used by Song (2004).
Electrostatic charge are measured and modelled in gas-solid fluidized beds by Professor Bi’s

group (Park et al., 2002; Mehrani et al., 2005). The study shows that the increased electrostatic
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charge levels occur in fluidized beds with increased fluidization gas velocity, increased particle
size, increased bubble size and increased bed circulation rate. The particle size determines
the polarity, large particles and small particles having opposite polarity, so in order to know
the electrostatic field in the bed, it is very essential to study the particle size distribution and
fluidized bed hydrodynamics (Hendrickson, 2006).

With the development of high-performance computers and multiphase models, CFD has
become a powerful tool for the understanding of the effect of fluid dynamics on chemical-reactor
performance. In the previous work, Mckenna et al. (1999) studied the overheating problem for a
single particle or a system of two or three touching particles or a single particle attached to the
wall using CFD. The study shows that the contact between small hot particles and larger cool
ones helps to avoid overheating and the early models of heat transfer in olefin polymerization
overpredict the temperature rise during early stages of polymerization. Meanwhile, Kaneko
et al. (1999) also studied the motion of the particles and nonuniform distribution of temperature
in a small fluidized bed using Discrete Element Model (DEM). However the work on CFD
simulation of pilot-scale fluidized beds is very few. Due to the large dimension of the industrial-
scale fluidized bed, the simulation work can only be done in Eulerian-Eulerian frame. Gobin
et al. (2003) presented some preliminary fluid dynamic simulation results of larger scale ethylene
polymerization dense fluidized bed using Eulerian model. The results are in good qualitative
agreement with the observed bed height, pressure drop and mean flow organization. In their
work, the solid phase consists of spherical particles with a constant particle size, but in reality,
the solid phase consists of different particle sizes with different age time. Thus in our work, a
multi-fluid model and chemical reaction engineering model are combined to investigate the fluid
dynamics, mass/heat transfer and particle size distribution in a pilot-scale fluidized bed. These
information not only can provide the visualization of the flow pattern of the fluidized bed, but
it also can provide important mechanistic understanding regarding particle overheating and

potential agglomeration problems.
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6.2 Polymerization Kinetics and Multi-fluid Model

6.2.1 Polymerization Kinetics for Metallocene Catalyst

A simplified mechanistic scheme for the metallocene catalyst kinetics is used here. Com-
pared to more widely used kinetics in the literature, chain transfer is ignored, only three
fundamental reactions: initiation, propagation and decay are considered. The approach is one
of engineering the catalyst design rather than a detailed mechanistic understanding of the var-
ious copolymerization and chain transfer reactions. This is necessary since activation energies
for these reactions are seldom measured. The rate constants for initiation(k;), propagation

(kp) and decay (kq) are defined below:

Initiation: ¢ <% ¢* (6.1)
Propagation: P,(c*) + M 8 Pr1 (6.2)
Decay : P;(c*} 5B p o+ (6.3)

where ¢ is a potential catalyst active site and ¢* is an active catalyst site. P} is a living polymer
with chain length n. M is monomer, P, is a dead polymer segment of length n that can not
undergo any further reaction, and c? is the deactivated catalyst site or dead site. For each rate

constant, an Arrhenius equation is considered,
k = koexp(—E,/RTs) (6.4)

where kg is the pre-exponential factor and E, is the activation energy.

All the reactions are first order reactions, and k; and k; has the unit of hr—1, kp has the
unit of g/gcat hr. The rate and activation energy can be pa,rametérized based on results from
laboratory-scale experiments using a stirred gas-phase bed reactor. During the study, it was
found that most rate profiles have a “peak” profile at the start of the polymerization and a two
site model fit the data better. The first site has a fast decay and initiation rate, accounting
for the initial peak in the reaction rate. The second site has a slow decay and initiation rate,

accounting for the slow decay at the end in the rate profile.
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6.2.2 Multi-Fluid Model

The multi-fluid model used in this work was extended from the two-fluid continuum model
by Syamlal et al. (1993). In this model, gas and N solid phases are treated as interpenetrating
continua using an Eulerian model. Each solid phase is characterized by a “particle” diame-
ter, density and other properties, and each phase has its own set of governing hydrodynamic
equations. The averaging approach is applied to derive the equations for both gas and solid
phases. The phasic volume fractions are introduced to track the fraction of the averaging
volume occupied by various phases. By definition, the volume fraction of all the phases must

sum to one:
N
g+ Zam =1, (8.5)
=] .

where e, and g4, are the volume fractions of the gas and solid phases, respectively.

The mass balances for the gas and solid phases are

N
0
E(EQPQ) + V- (ggpgug) = — Z My (6.6)
a=1
and
d
—(Emps) +V- (Esapsusa) = Mga —+ 3kﬂPsL2aba - kaPngaa, (6-7)

ot
where p, and ps are the gas- and solid-phase densities, u, and uy, are the gas- and solid-
phase velocities, and My, is the mass-transfer rate from the gas to the at? solid phase due to
polymerization reaction. The last two terms in the solid continuity equation account for the
effect of aggregation and breakage. Since aggregation and breakage will not change the total
solid volume fraction, there are no extra terms in the gas continuity equation. Only monomer
(ethylene) is assumed to transfer from gas phase to solid phase since it is the primary heat

source for the polymerization rate (~90%), and the mass-transfer model is
Mga = Emkcaau(cg - CMQ)Mw. (6.8)
k.o is mass-transfer coeflicient and it is related to Sherwood number Sh, by

kca = 2Db_a, . (6-9)

[
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where Dj is the diffusivity of monomer in the bulk phase of the reactor. a, is the ratio of
particle external surface area to volume, and for a spherical particle, a, = 6/L,. ¢; and cypq
are the monomer concentration in the gas phase and solid phase, respectively. car, is related
to the mass fraction of monomer in the solid phase X a0 by cara = psXsma/Mw.

The momentum balances for the gas and solid phases are

N

J
a(sgpgug) +V (egpguguy) =V -0, + Z foo + €gpgE (6.10)
=1
and
6 N
=y (Esapsusa) +V. (EsaPsusausa) =V -0sa— fgoc + f,@a + €saps8E, (6-11)
o BA=1,#c

where o, and o, are the gas- and solid-phase stress tensors, fy, is the interaction force
between the gas and the of solid phase, £, is the interaction force between the % and ot
solid phases, and g is the gravity vector. A simple Newtonian closure is used for the gas-phase
stress tensor, and kinetic theory is used to calculate the solid-phase stress tensor in the viscous
regime (Syamlal, Rogers, and O’Brien, 1993).

For the energy balance equations, the heat produced from polymerization reaction is as-

signed to solid phase. The energy balance for gas and solid phase are

T, <
sgngpg (8_tg + Hg - VTQ) =-V- qy — Z Hga + Hwall(Twall — Tg): (612)
=1
oT.
Esapscps (8_:0[ e VTSQ) =-V Qs + Hgﬂ - AHTSO” (613)

where Ty and T, are the gas and solid-phase temperature. qg and qs, are the conductive heat
flux for gas and solid phase. Hy, is the heat transfer between gas and solid phase and it can
be modelled as

Hyo = ~€sahatu(To — Ty), (6.14)

where Ay, is the heat-transfer coefficient and it is related to Nusselt number by
hfo = 22 gNug/Lq. (6.15)

Ag is the thermal conductivity of the gas phase.
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The heat produced from polymerization reaction is AH,s, = —snak;[c*]cMaAH,-, where
ki, = kp/[co] has units of cm®/mol-sites s. [cg] is the initial potential active catalyst site
concentration. The lumped-thermal model is used here and it assumes that the temperature
of the particle is uniform, but different from that of the surrounding, and the active sites are
uniformly distributed within the particle during the growth. The intraparticle heat transfer

is ignored and the intraparticle species diffusion resistance is accounted for by an isothermal

effectiveness-factor 7,, which has a form of

_ 3[¢060th(¢'a) - 1]
o = ()%

(6.16)

where ¢, is the non-isothermal Thiele modulus and

Ly k;::[c*ia
oy = 5\ Do (6.17)

D.4 is the effective diffusivity and for heterogeneous catalyst, D4 = Dys/7, where € and 7

are the porosity and tortuosity of the macroparticle, respectively.

Typically, in a UNIPOL polyethylene process, there are four species in the gas phase: CpHy
(monomer), an a-olefin (copolymer), N2 and Hy. For each species, the mass fraction is Xy, Xo,
X3 and X4 respectively. Only monomer {CoHy) is transferred from gas phase to solid phase,

thus the equation for each species can be written as

' N
2 (eapyXa) + V- (eqpyXity) = - 5 M, (6.18)
2 (corsX2) + V- (eqpyXang) = 0, (6.19)
%(sgpgxg) +V - (ggpg X3ug) = 0, (6.20)
%(Egpg&) + V- (g9pg X4ug) = 0. &2

In each solid phase, the mass fraction of monomer in the solid phase needs to be solved,

and

1o}
a(ssaPsXsMa) + V- (5saPsXsMausa) = Mga - nassapsk;XsMa[C*]a- (622)

Noticed in this equation, mass transfer and chemical reaction are coupled. For polymerization

reaction, mass transfer is very fast and the reaction is controlled by the polymerization reaction
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rate. The mass fraction of monormer in the solid phase is a constant. If there is no aggregation

and breakage, combining Eq. 6.7 with Eq. 6.2.2, we can get:
Mga(l - XsMa) = nassapsk;;XsMa[c*]a- (6.23)

Thus when all the active sites become dead sites, [¢*] = 0, both mass transfer and reaction
terms are zero, and particles will stop growing.

The species equations for potential active sites [c], active site [c*] and dead sites [c?] are

%(Esaps[c]) + V - (esaps[c]usa) = _Esapski[c]: (6-24)_
%(Esaps[C*]) + V- (esaps [C*]usa) = Esapskilc] — EsaPskd[C*], (6-25)
%(Emps[co]) + V - (€5aps[P|Usa) = Esapskalc’]. (6.26)

where k;, kp and kg are the rate constant for initiation, propagation and decay, respectively.
Note that fresh catalyst has only potential active sites, and no active sites and dead sites, so
[e*] =[] = 0.

Particle size changes due to polymerization reaction, aggregation and breakage. If no
aggregation and breakage are considered, the particle length is related to solid void fraction
by a constant. In this way, transport equations for particle length or particle volume are not
needed. But if aggregation and breakage are considered, such equations are needed to be solved

- with other equations simultaneously.

6.3 Results and Discussion

In a UNIPOL PE process (Fig. 6.1), the fluidized bed reactor consists of a reaction zone
and disengagement zone. The main reaction zone -has a height to diameter ratio of about 4-6.
The disengagement zone above the main reaction zone has a larger diameter in order to reduce
the gas velocity, so that the particles entrained by the gas can fall back into the main section of
the bed. It is essential that the bed always contain polymer particles to entrap and distribute
the powdery catalyst. On start up, the reaction zone of the fluidized bed is charged with

polymer before gas flow is initiated. Gas mixture (monomer (CyH4), comonomer, inert(Ns)
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and Hp) is introduced to the settled bed from the bottom with a velocity sufficiently high to
fluidize the polymer particles in the reactor. After the bed reaches steady state, fresh catalyst
particles (with diameter of 20-100 pm) are injected from a position above the distributor and
reacts with the incoming monomer. The catalyst particles are quickly encapsulated by the
newly formed polymer and grow to form bigger particles. The fully-grown polymer particles
accumulate in the fluidized bed and cause the bed level to rise. When the bed level reaches a
certain height, the product is removed intermittently from the bottom portion of the fluidized
bed. The particle entrainment together with the unreacted, gas pass through the enlarged
disengagement zone and leave the reactor from the top. The entrainment can be further
reduced by a cyclone and a filter to avoid deposition of polymer on heat-transfer surfaces and
compressor blades. The effluent stream has a higher monomer concentration since the single-
pass monomer conversion in the FB polymerization reactors is low, only 2% to 5%. The effluent
gas is compressed, cooled and recycled back to the reactor where it continues to react with the
catalyst. The resin leaving the reactor contains absorbed hydrocarbons. After degassing, the
reactor produces a granular resin with a consistent particle size distribution which is readily

pelletized.

6.3.1 Validation of Fluid Dynamics for a PE Pilot-Scale Fluidized Bed

In order to validate the fluid dynamics using CFD, start-up cases were evaluated for which
catalyst is not injected into the bed, and no product is removed from the bed. First, two-
dimensional (2D) simulations were carried out for a pilot FB polyethylene reactor using MFIX.
The height of the main reaction zone is on the order of 100~1000 c¢m, and will be refereed
as L. The total height of the reactor with expansion and dome area is about 2 ~ 3 L. The
diameter of the main reaction zone is in the range of 10~100 c¢m, and will be refereed as D.
The diameter of the dome area is about 2.0D. The sketch of the PE pilot-scale fluidized bed
reactor is shown in Fig. 6.2. Non-uniform cartesian grids are used in 2D simulation and the
number of grid cells are 127x251. In MFIX, it is hard to build a mesh for a complex reactor like

this. In the simulation, a mesh for a larger rectangle is used, and then the red regions inside
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Figure 6.1 Gas-phase fluidized bed olefin polymerization process (UNIPOL
process)

of the rectangle are set as no-slip wall (NSW) to cut out the shape of the reactor (blue region
in Fig. 6.2). Thus only about 60% cells are fluid cells among all the cells. For the boundary
condition, at the bottom of the bed, gas is uniformly distributed, and a mass inflow (MI) for
gas phase is specified. At the top, a pressure outflow (PO) is specified. If catalyst is injected
into the fluidized bed, a mass inflow for solid phase is set at the inlet. If product is removed
from the bed, a mass outflow (MO) is set at the outlet. The typical operating conditions for
gas-phase polymerization reactors are listed in Table 6.1. The mathematical model used in the
simulation is described in Sec. 6.2.2, and the detail information about the gas and solid stress
tensor and interaction force between phases are same as described in Chapter 3. For the drag
model between gas and solid phase, the Gidaspow model is used in the simulation.

Fig. 6.3 shows the instantaneous gas void fraction at the beginning of the fluidization.
The simulation results show slug-flow behavior, thereby confirming visual observations of the
reactor through a high-pressure viewing port on the pilot plant reactor. However the predicted
bed height from 2D simulation is 32% higher than the experimentally measured value. The

simulation value for the average pressure drop between two pressure taps is only 21 mmHg,
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Figure 6.2 Sketch of PE pilot-scale fluidized bed reactor
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Table 6.1 Typical operating conditions for gas-phase polymerization reac-

tors.
Gas properties Units Value
Density, pg g/cm? 0.0221
Viscosity, pig Pas 1.427 x 10
Heat capacity, Cpqg cal/(g-K) 0.3~0.4
Pressure, P, bar 10~30
Inlet temperature, T} K 343~363
Superficial gas velocity, ug cm/s 40~100
Particles properties
Density, ps g/cm?® 0.843
Heat capacity, Cps cal/(g-K) 0.168
Average catalyst size ' pam 10~100
Average polymer particle size A 1000
Thermal conductivity, As cal/(cm-sK) 3~7x1075
Monomer bulk diffusivity, Ds em?/s 2~ 6 x 1073
Effective diffusivity, Dea cm? /s 1~5x10"4
Coeflicient of restitution, e - 0.8
Heat release of polymerization reaction, —AH, cal/mol 2.5 x 10*

and is lower than the experimental value of 29.30 mmHg. The average hold up for the 2D
simulation is higher than the one from experiments. Since it is very important to match this
value for validation of the fluid dynamics of the pilot-scale fluidized bed, the drag model was
modified to match the bed height from experiments. Results showed that by modifying the
drag model, the bed height from 2D simulation is lower, and the pressure drop is closer to the
experimental value. However the slug-flow behavior is no longer observed.

According to a study by Peirano et al. (2001) on 2D and 3D simulation of a turbulent
gas-solid fluidized bed, 2D simulation should be used with caution, and will be more likely to
be successful in cases where the flow is by nature two dimensional. However, for industrial
fluidized beds, the radial direction is very large and cannot be ignored. For this reason, a 3D
simulation of the pilot-scale fluidized bed was carried out for comparison. Cylindrical grids are
used in the 3D simulation and the number of grid cells are 28x189x12. Coarse grids are used
in 3D simulation due to long running time. As in the 2D simulation, the geometry of the PE

pilot-scale reactor is cut out from a larger cylindrical column, and only about 50% cells are
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Figure 6.3 Instantaneous gas void fraction at 2 s, 48, 6 s, 8 s and 10 s from
2D simulation.

fluid cells and other cells are set as non-fluid cells. The instantaneous gas void fraction at the
beginning of the fluidization for a 3D simulation is shown in Fig. 6.4. Similar to the 2D results,
slug flow is observed at around 4 seconds. However, the differences between the results of 2D
and 3D are striking: by simply adding a third dimension to the simulation, while keeping all
other numerical parameter unchanged (same drag model), the expansion of the bed changed
significantly. The bed height drops from 132% to 105% of the experimental value. Average
hold up for the FB decreases and small bubbles appeared in the 3D simulation. The pressure
drop along the two taps increased from 21 mmHg to 26.25 mmHg (Fig. 6.5). The pressure
decreases almost linearly in the 2D and 3D simulations, however the slope of the pressure drop
for the 3D simulation is lower than for the 2D simulation.

Time-averaged gas-velocity fields for 2D and 3D simulations are compared in Fig. 6.6. The
time-averaged solid-velocity fields for 2D and 3D simulation are similar to this profile. It is
also clearly seen that the flow patterns for these two simulations are different. In the 2D case,

the average gas velocities are lower and more symmetrical. In both 2D and 3D simulations, a
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Figure 6.5 Comparison of pressure drop along the two taps for 2D and 3D
simulations.

core/wall layer structure is observed, and gas (or solid) flow is predicted to occur in a downward
direction along the wall. The average gas velocity at different heights, 0.24L, 0.27L and L, is
also compared in Fig. 6.6. For 2D simulation, the average solid velocity does not vary much
at different heights. However, for the 3D simulation, the solid velocity in the middle decreases
with bed height. The maximum gas velocity in the middle exceeds 300 cm/s at a height of
0.24L.

The normalized pressure drop signal from experiment is compared with 2D and 3D sim-
ulation in Fig. 6.7. The graph shows that the Auctuation of experiment data is very strong
and with a higher amplitude. The signal for 2D simulation is relatively smooth compared to
3D simulation, but both have a smaller amplitude. The bed pressure drop signal from ex-
periment and simulations can be used to determine the power spectrum. These results were

used to fine tune the model to match the observed fluidized-bed dynamics. The power spectra
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Figure 6.6 Comparison of time-averaged gas velocity for 2D (blue) and 3D
(red) simulations.

of the pressure fluctuations from experiments and 2D, 3D simulations (100 Hz sample data)
are compared in Fig. 6.8. In order to convert to the frequency domain, the discrete Fourier
transform of the noisy signals of experiment and simulations are found by taking the 512-point
fast Fourier transform (FFT). In Fig. 6.8, the blue line and green line are the 2D and 3D sim-
ulation results and the red line is the experimental result. From the results, we can also come
to the conclusion that 3D simulation results match the experimental data better. The results
at low frequency (the magnitude change to linear) are compared for experiment, 2D and 3D
simulations in Fig. 6.9. The graph shows that 3D simulation can repreduce the first and second
peak in the experimental data, but with a higher magnitude. However 2D simulation can only
get one peak and the frequency is in the middle of the two peaks. As expected, both 2D and
3D simulations cannot reproduce the high frequency in the experiment data due to the limit
of the model derivation (In the kinetic theory of the solid phases, higher frequency of collisions
of particles is ignored during model derivation). Usually the first peak indicates the frequency
of slug flow, so the energy for 3D simulation is a little bit higher than the experimental data.

Three-dimensional PE pilot fluidized-bed simulations are computationally expensive, even
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Figure 6.8 The power spectra of the pressure fluctuation from experiments,
2D and 3D simulations
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Figure 6.9 Power spectra results at low frequency from experiments, 2D
and 3D simulations.

when a parallel code (Distributed Memory Parallelization) for multiprocessors is used to reduce
the computation time. Multiprocessor performance for the 3D simulation is compared for 2, 4,
8, 16 and 32 processors in Table 6.2. The grids number on radical direction (I direction) is 28,
on vertical direction (J direction) is 189 and on azimuthal direction (K direction) is 12. The
influence of the parallelization direction was also investigated and the results for speed up (Sn)
and efficiency (En) for 3D simulation are presented in Fig 6.10 and Fig. 6.11. Parallelization
in the vertical direction (J direction} has the maximum speed-up value and best efficiency.
By using 4 processors in the J direction, the speed up can reach to 3.28 and the efficiency is
81.97%. If the processors increase to 8 and 16, the speed up increases to 5.50 and 8.47 with
an efficlency of 68.74% and 52.91%. The speed up increase with the increase of the number
of processors, but the efficiency decreases at the same time. With the trade off between the

computation time and computer resources, 8 processors were chosen for this 3D simulation.
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Table 6.2 Multiprocessor performance for 3D simulations using 2, 4, 8, 16
and 32 processors.

Number of process CPU Time(s) Wall Time (s} Sn  En (%)

1 I=1J=1K=1 55855 55870 1.00 100.6
2 I=1J=2K=1 35399 35497 1.58  78.84
2 I=2J=1K=l1 37470 37572 1.49  74.48
2 I=1J=1K=2 50385 50497 1.11 99.42
4 I=1J=4 K=l 16963 17070 3.28  81.97
4 I=2J=2K=1 19104 19211 2.91 72.84
4 I=4J=1K=1 24321 24435 2.29  57.26
4 I=1J=2K=2 32727 32844 1.70  42.60
8 I=1J=8K=1 10070 10178 550  68.74
8 I=2J=4K=1 10486 10599 528  66.01
8 I=4J=2K=1 12758 12875 4.35 54.34
8 I=1J=4K=2 16567 16686 3.35  41.93
16 I=1J=16 K=1 6496 6611 8.47  52.91
16 I=4 J=4 K=1 6995 7115 7.87  49.17
16 I1=2J=8 K=1 7334 7452 7.51 46.94
32 I=2 J=16 K=1 4586 4714 11.87  37.10
32 I=1J=32K=1 4690 4823 11.60 36.27

32 I=4J=8K=1 4981 5111 10.85  34.22
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6.3.2 Chemical Reaction Engineering Model and Kinetic Parameters Study

After validation of the fluid dynamics for start-up cases, the work on incorporating the
energy, species, and population balance equations was undertaken. However, the solid phase
residence time for a PE polymerization reactor is on the order of hours, and the fluid dynamics
of a fluidized bed is on the order of seconds. It is intractable to run a 3D simulation for hours
using the current CFD code. Hence, the time scale for fluid dynamics and polymerization
reaction is separated in the following work, and the polymerization reaction equations are
solved outside of CFD simulation. The CFD simulations is initialized to a steady state with a
distribution of particle size, age time and temperature. In order to accomplish this, a reaction-
engineering model based on the age of particles was used. The simulations started with this
steady state and were run for a few seconds. During thlis short period, since the polymerization
reaction is so slow, we can assume that the particle will not grow and the particle temperature
will not change due to reaction.

In the reaction engineering model, it is assumed that the gas phase is at steady state, so
equations for the gas phase from multi-fluid model do not need to be solved. The equations
for the solid phases from the multi-fluid model are solved using an ODE solver in Matlab

after dropping the inhomogeneous terms. Thus, the equations for the engineering model are

as follows:
des
PSE = gskeay (Cg — ey ) Mw (6.27)
d
= (Esle]) = —eskilc] (6.28)
d . .
a’;(ss[c ]) = Eski[c] - Eskd[c ] (6.29)
d
- (es[e’]) = eskale’] (6.30)
dT .
d
psE(ESXsM) = g5kcay (Cg - CM)MW = T]ES,OSJG;XSM[C*] (632)

where cpr = ps Xan/My. 7 is residence time of the particles. If we assume the solid phase in

the fluidized bed as a well-mixed CSTR, then the particle residence time distribution function



135

(RTD) is: _
h(t) = Lerrm (6.33)

§

Ts is the mean residence time, for a typical PE reactor, it is around 1~10 hours.

The mass/heat transfer and heat produced from polymerization reaction are same as de-
scribed before in the multi-fluid model. If no aggregation and breakage are considered, the
solid void fraction relates to the particle diameter by a constant, and €5 = ¢L3. The constant
¢ correspond to the number of particles per unit volume and can be estimated from average

hold up in the fluidized bed from experiment. Since the average hold up is:

oo o0
(€s) =/ es(T)h(r)dr = cf L3(r)h(T)dT. (6.34)
0 0
The corresponding initial conditions for Eq. 6.27~Eq. 6.32 are:

és = cLgh, Ty = Ty, Xopr = 0, (6.35)

[d] = [eo], [€]=0, [’]=0. (6.36)

It is difficult to get the initial potential active catalyst site concentration from experiment,
so in the simulation, [¢g) is estimated from the production rate of the polymer by forcing the
average particle size equal to the measured average polymer particle size. The average particle

size can be calculated as:
(Lo} = f Lo(r)h(r)dr. (6.37)
0

First, the chemical reaction engineering model is used to fit the experimental data and
obtain the kinetic rate parameters. A set of experiments were conducted at Univation Tech-
nologies around a center point for different flow-feed ratios of comonomer/ monomer and
hydrogen/monomer in the lab reactor (see Table 6.3). Three experiments were conducted at
three temperatures (indicated by low, middle and high temperature). The reaction rates of
monomer Rferp, are available for each case at different temperatures from lab reactor. In
order to do the fitting, the reaction rates of monomer at different temperatures are calculated

from the chemical reaction engineering model using a two site model (i indicates different site
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Table 6.3 Different cases conducted in Univation Technology for a lab re-

actor.

Case Cx / Cy Hp / Co
1 low low
2 low high
3 high high
4 high low
5 center center

type, ¢ = 1,2}, and
Ry = ) mikp[cli = > mik), [c*le/ [eoks (6.38)

i=1,2 f=12

The optimization tool box -isgcurvefit in Matlab is used to do the three curves fitting (Matlab
codes are: drive-fitting.m, objfunc.m, odefunc.m), and the minimum value of X:(RM—JE%mf,,gmi,;,)2
is determined with the best fitted rate constants and activation energies k;, ky, kg, AE;, AE,
and AFEy.

The comparisons of model fitting with lab data for Case 1 to 5 are shown in Fig. 6.12-
6.16. The kinetic rate data for Cla.se 1-5 from model fitting at middle temperature are listed in
Table 6.4. Generally spea,king,-the two site model fit the curves quite nicely, ‘a.nd the initiation
rate data can be determined with a high degree of accuracy. The initiation rates for both sites
at middle temperature varied by a factor of 5. The propagation rate for both sites varied by a
factor of 5. First site has fast decay, and the rate varied by a factor of 2 and the second site has
slower decay and the decay rate is small and varied by a factor of 6. These rate data are very
useful and they can be used to model single particle temperature rise for each case and later
it will be used to investigate the hot spots in the fluidized beds in the multi-phase simulation.
Since case 5 has the highest “peak” at the beginning when the operation temperature is high,

this case is the worst case for particle overheating.
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Table 6.4 Kinetic rate data (Ink = Inkg — AE/RT) for Cases 1-5 obtained
from two sites model fitting at middle temperature [normalized
by the rate data of case 5 (site 2)).

Case Initiation Propagation Decay
Inkg; —AE;/RTs Inkg —AE,/RTs | Inkgg —AEi/RT;
(hr1) (&/gcat-hr) (k™))
Site 1 | 0.6018 7.34 1.671 -10.82 0.8190 5.24
Site 2 | 0.4842 9.71 1.502 -8.66 3.8692 -35.97
Site 1 | 0.6761 6.68 1.3236 -4.88 1.0628 2.57
Site 2 | 1.1735 -3.55 0.9486 0.33 1.8518 -10.35
Site 1 | 0.5818 9.14 1.0729 -1.29 0.8890 4.9
Site 2 | 1.6884 -12.38 0.6912 5.03 0.0880 10.86
Site 1 | 0.6871 8.376 1.3746 -10.66 0.7972 6.1
Site 2 | 0.4975 9.68 1.5085 -8.15 3.8757 -35.88
Site 1 | 0.8975 2.43 2.413 -21.17 1.3374 0.33
Site 2 | 1.00 0.00 1.00 0.00 1.00 0.00
5
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Figure 6.12 Two sites model fitted with experimental data for Case 1.
Red: high temperature; Green: middle temperature; Blue:
Low temperature} (the reaction rate and time are scaled by a
constant).
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Figure 6.13 Two sites model fitted with experimental data for Case 2.
Red: high temperature; Green: middle temperature; Blue:
Low temperature) (the reaction rate and time are scaled by a

constant).
7 ' .
+
LA+ -
°T i
‘;*“'{‘2&; * 2
N R%=0.6307 ]

E-Y

Reaction rate

[} 0.2 0.4 0.6 0.8 1 1.2
Time

Figure 6.14 Two sites model fitted with experimental data for Case 3.
Red: high temperature; Green: middle temperature; Blue:
Low temperature) (the reaction rate and time are scaled by a
constant).
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Figure 6.16 Two sites model fitted with experimental data for Case 5.
Red: high temperature; Green: middle temperature; Blue:

Low temperature) (the reaction rate and time are scaled by a
constant}.



140

6.3.3 Effect of Catalyst PSD on the Overheating and Final Polymer PSD

Commercial gas-phase reactors are critically dependent upon good mixing for heat removal
and prevention of sintered polymer agglomerates. It has been found that to a large extent,
good mixing is related to the polymer particle size and the distribution of these particle sizes
in the bed. The polymer particle size distribution is governed by the feed catalyst particle
size. These catalyst particles grow by a factor of 15-20 at a rate determined by the intrinsic
kinetics of the polymerization. This time dependent process generates the resulting polymer
particle size distribution in the fluid bed reactor. The polymer represents over 99.9% of the
total bed mass. So far most models have taken the catalyst particle as a single particle size
with an average value. However the large particles produced by the polymerization reaction
can not be predicted using such an assumption and more importantly it underestimates the
overheating in the fluidized bed.

In this work, QMOM is combined with chemical reaction engineering {CRE) model to study
the effect of catalyst PSD on the overheating and final PSD of polymer. The flow chart of the
process is shown in Fig. 6.17. First, moments of catalyst are calculated from its distribution
function f(L). In order to consider the effect of catalyst PSD, by using QMOM, two or three
nodes can be used to represent the underling distribution, each node has its own diameter and
weight. The CRE model is applied to each node by assuming that the initial particle size Ly
has the diameter of the node. With CRE model, the evolution of particle diameter with age
for each node can be obtained. According to the definition of moments, the moments of final
product for each node can be obtained by integrating each curve with its age distribution. If
there is no aggregation and breakage, the number of particles will not change and the weight
for each node will not change, thus, the moments of final polymer can be calculated as a sum
of weighted moments of each node. The detailed information of this method and results will
be shown in this section. Once we know the moments of polymer, by using QMOM, two or
three nodes can be used to represent the PSD of the polymer. Meanwhile, with the CRE
model, the particle diameters are associated with particle temperature. A 3D CFD simulation

is conducted to investigate the segregation and hot spots in the fluidized bed. The detailed
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information about the 3D simulation is described in Sec. 6.3.5

The catalyst size distribution from experimental data is plotted in Fig 6.18. The distrib-
ution is a log-normal distribution but with a small "bump” at the low end of the PSD. The
average particle size is in the range of 10-100 pm, it will be refereed as d,,. and the stan-
dard deviation is around 25 pgm. The normalized moments of the catalyst distribution can be

calculated from the definition:
+c0 .
M catalyst = f f(L)L dL (639)
0

and the first six moments are: mg = 1.0,m; = 6.618132 x 10723 cm,my = 4.825101 x
1075 cm?, m3 = 3.835720 x 1077 cm?®, my = 3.208252 x 10~° cm*?, ms = 3.035996 x 10~ cm®.
With QMOM, two or three nodes can be used to represent the catalyst distribution. If two
nodes are used, one node is 0.91d,,. and the second node is 1.71d,,.. The weight percentage
of the first node is 63.87% and the second node is 36.13%. If three nodes are used to represent
the PSD, the three nodes are 0.69dgye, 1.25dgy, and 2.03dg,e. The percentage of the weight
for each node is: 24.57%, 63.81% and 11.62%, respectively.

As we know, case 5 is the worst case for particle overheating, so the kinetic rate data for
case b are used in the following discussions. If two nodes are used for representing the catalyst
PSD, the chemical reaction engineering mode is employed for each node. The evolutions of
particle size and temperature rise with age using two nodes are plotted in Fig. 6.19 and 6.20.
For each node, the moments of the PSD of polymer can be obtained by integrating the length
over the particle age distribution in the bed. The k** moment of PSD for each node can be

written as:
*° k
ko, polymer =[ Lsa(T)h(T)dT (640)
0
If two nodes are used, the moments of the final polymer are found from weighted averages:

Tk polymer = W1TMEL T Watlk (6.41)

where w; = 63.87% and ws = 36.14% as discussed earlier. By integrating the two curves
in Fig. 6.19 from zero to ty = 80 hr (a time between 10-20 times of mean average resident

time), the moments of the predicted size distribution can be determined, and mg = 1.0,m; =
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Figure 6.17 Flow chart of combining QMOM with CRE model to investi-
gate the effect of catalyst PSD on the overheating and final
polymer PSD (drive-moments.m, odefunc.m, quad.m).
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Figure 6.18 Catalyst particle size distribution.

1.305570 x 10~} cm, mg = 1.903549 x 10~2 cm?, m3 = 3.010876 x 10~3 ¢m?, my = 5.079755 x
10~* cm?, ms = 9.024098 x 10~% cm®. The standard deviation (&) of the polymer PSD and

the “width” of the distribution can be calculated from those moments:

Y (e — m%)’

cw = o/L = /(ma — m?)/my = 0.34171.

If three nodes are used for representing the catalyst PSD, for the first node, the three
nodes are (.69d,ye, 1.25d4ye and 2.03dg,e.. The evolutions of the particle size and temperature
increase with age using three nodes are shown in Fig. 6.21 and Fig. 6.22 respectively. Similar

to two nodes, the moments of this distribution can be calculated by:
Tk polymer = W1TEL + WaMkg + wW3mks (6.42)

where w1 = 24.57%, wy = 63.81% and w3 = 11.62%. By integrating over the three curves
in Fig. 6.21, the moments of the predicted size distribution are: mg = 1.0,m; = 1.304596 x
10~ cm, mp = 1.904223 x 10~ 2em?, m3 = 3.011871 x 10 3cm®, m4 = 5.075125 x 10~4cm?, my =

9.013480 x 10~%cm®. The “width” of the distribution can be calculated from those moments,
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Figure 6.21 Evolution of particle diameters with age using three nodes for
case 5.

and

cv =0o/L = 1/(mg — m})/my = 0.34472.

Note that these moments are slightly different than those found earlier with two nodes.
Presumably, using three nodes should yield higher accuracy because it should yield a better
representation of the log-normal distribution of catalyst PSD. And also notice that, the highest
relative temperature increase by using three nodes is around 0.9, it is much higher than the
highest relative temperature increase using two nodes, around 0.56. So using one or two nodes
to represent the underling distribution underestimates the overheating problem in the bed.
Thus in future discussions, the catalyst PSD is represented by three nodes.

Some moments have special meaning, such as mg represent the total particle number den-
sity, in here myg is normalized to a unity. n; indicates the average particle size, myq is related
to the particle area and mg3 is related to the total particle volume. In the simulations, in order
to compare the results with experimental polymer PSD data, m; the average particle size is
matched to the experimental value by changing the initial catalyst site concentration. Accord-

ing to the size distribution data obtained from Malvern’s particle size analyzer, the moments



146

1.0
= First node
1] = = Second node
1] =+ Third node
0.8p

ref

1
i
i
d
06f*
]
v
'

=
17 !
04fF
‘4
~ "5
t“ A""-,_
. Badl P
Olzl ‘~~ 'hl---;-n. ---------
~~-- L T -l-ih IIIII -
0 : I
i 0.25 0.5 0.75 1

Figure 6.22 Evolution of particle temperature rise with age using three
nodes for case 5.

for the final polymer are: mg = 1.0, m; = 1.297835 x 10~ 1cm, mg = 1.852021 x 10~ %cm?, ms =
2.854163 x 107 3cm®, my = 4.678335 x 10~ %cm?, ms = 8.054136 x 10~ 5cm5. The “width” in
this case is:

c.v =0/L = 1/{mz — m2)/m; = 0.31548.

Comparing the PSD from the reaction engineering model with the experimental data,
the prediction overall is good, but the simulation has a higher standard deviation and larger
width. This difference may be due to the assumption that the particles are well mixed (i.e., no
segregation due to size), or due to how the experimental PSD is measured (i.e., at the outlet
or taken from samples higher up in the bedj.

The particle size distribution probability plot for the initial catalyst PSD and the final
polymer PSD are shown in Fig. 6.23 as a solid line. The cumulative percent estimated from
QMOM (three nodes for final polymer distribution) using two or three nodes to represent
underling catalyst distribution are also shown in Fig. 6.23 as symbols. We can see that the
model predicts slightly larger particles as compared to the experimental data. Nevertheless, the

overall predictions appear to be very good, indicating that combining the reaction engineering
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model with QMOM is a promising method for predicting the polymer PSD in a PE reactor. The
moments calculated from catalyst PSD (either using 2 or 3 nodes) are very similar. However,
with three nodes to represent the catalyst PSD, we find a higher temperature increase for the
final node. (Compare Figs. 6.20 and 6.22). The temperature profile in the bed is affected by
the catalyst PSD. The larger the mean catalyst size, the larger the final polymer particle and
the higher peak temperature increase in the solid phase. Also the breadth of catalyst PSD
are important, since when the “width” increase, the nodes are more widely distributed and
the biggest node have h'igh chance to be overheated. Thus, in order to investigate the hot
spots in the bed it is very crucial to represent the upper tail of the catalyst size distribution
using QMOM. As we can see in Fig. 6.23, the tail is most accurately represented in QMOM by
using N=3 (or more} nodes, so three nodes are choose in the following work. With Fig. 6.21
and 6.22, the information on the percentage of polymer particle above a certain temperature
can be determined and it is plotted in Fig. 6.24. The graph shows for case 5, only less
than 0.1% polymer’s relative temperature increase is over 0.6 and most polymer particle’s
relati{re temperature increase (about 97%) is low, only 0-0.2. Such graphs are very useful in
designing catalyst in industrial in future and the catalyst is designed to control the percentage

of overheating particles in the range of 1-5%.
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Figure 6.25 Evolution of particle temperature rise with particle size using
three nodes for case 1.

6.3.4 Effect of Intrinéic Kinetics on the Overheating and Final Polymer PSD

Combining the CRE model and QMOM, it is possible to study the effect of intrinsic kinetics
on the temperature rise of a growing polymer particle. The evolution of particle temperature
rise with particle size using three nodes for cases 1-5 are plotted in Figs 6.25-6.29. As we
can see, the temperature rise profile are different for each case, case 5 is the worst case for
particle overheating, the relative temperature rise is about 0.9 for the biggest node. Case 4 has
the lowest temperature rise compared to other cases. Also notice in the graphs, the intrinsic
kinetics affects the final polymer PSD. Case 1 and 4 tend to produce larger particles than other
cases, and the largest rclative sized particle is around 1.8. The final polymer PSD predicted
from CRE model for all the cases are compared with experimental data (case 5) in Fig 6.30.

Similar to case 5, the model predicts slightly larger particles as compared to the experimental

data, but overall, the prediction is good.
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three nodes for case 5.
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6.3.5 Investigation of Particle Segregation and Hot Spots in a Fluidized Bed
Using CFD

After successfully predicting the final polymer PSD, the moments are known, using QMOM,
the PSD can be represented by two or three nodes in the CFD code to investigate the seg-
regation and “hot spots”. Since case 5 is the worst case for the overheating, the following
discussion uses the kinetic rate data from this case. For case 5, the predicted moments for the
final polymer PSD are: mp = 1.0,m; = 1.304596 x 10~ ! cm, mas = 1.904223 x 1072 cm?, m3 =
3.011871 x 1073 em®,my = 5.075125 x 10~* cm?, ms = 9.013480 x 108 cm®. Using the PD
algorithm, three nodes can be used to represent this PSD, they are 0.288, 0.664 and 1.038 (di-
mensionless by L,.s). For each node, according Fig. 6.29, the temperature and age associated
with this node are listed in Table. 6.5. Since in CFD simulation, we are not able to track the
age time of a particle, for each particle size the highest possible relative temperature rise is
0.616, 0.172 and 0.06, the lowest possible temperature rise is 0.052, 0.056 and 0.06, and the

average temperature rise is 0.285, (.114 and 0.06.
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Table 6.5 Relative temperature rise and age associated with each node

Node | Relative particle diameter | Relative temperature increase | Relative age
a=1 0.288 0.616 0.0275
0.188 0.0875
0.052 0.28
a=2 0.664 0.172 0.39
0.056 1.145
a=3 1.038 0.06 1995

A 3D simulation was run in the pilot scale fluidized bed with these three nodes, and the
average particle size (normalized by the average particle size in the bed) along the bed height
is plotted in Fig. 6.31, not much segregation was observed at the bottom of the bed, and the
average particle size at the bottom is only about 1.1 times of the average size for the whole
bed. However, most segregation is observed in the expansion and dome area. The average
particle size at the top is only 50%-60% of the average particle size in the bed. Since we know
that most sheeting problem happen in the expansion area, the number of particles for each
node at this region are plotted in Fig. 6.32. From the graph, it is clearly to see that small
particles are dominated in the expansion area. Although the number of small particles are
very small (less than 50), small particles have high temperatures, hot spots are more likely to
be observed. The average particle temperature rise profile for this simulation at 15 s is shown

in Fig. 6.33 and the average solid temperature T is:

Ts1w1 + Tsowe + Tszws

Iy =
w1 +wg +wa

(6.43)

From the graph, we can see that in the main reaction area, the temperature is almost uniform
and without hot spots. However, in the expansion region, the average particle temperature
are much higher. Those information will help us on locating the possible “hot spots” and

agglomeration in the fluidized bed in the future.

6.4 Conclusion

2D and 3D simulations are conducted for a pilot-scale fluidized bed to validate the fluid

dynamics. The simulations results for bed height, pressure drop along the two pressure taps
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Height

Figure 6.31 Average particle size along the bed height.

and pressure fluctuation signal are compared with available experimental data. Significant
differences are observed between 2D and 3D simulations. The results shows that, for an
industrial-scale fluidized bed, only 3D simulations are able to match statics (bed height and
pressure drop) and the dynamics (pressure power spectra) properties of FB because of the
natural three dimensionality of the flow. The 3D simulations have good agreement with exper-
iment data on the bubble frequency and can describe the dynamic movement of the particles
in the fluidized bed. Due to the different time scale for polymerization reaction and fluid
dynamics, the polymerization reaction is solved outside of CFD simulation. The CRE model
is solved in Matlab using the ODE solver, and the particle size, age and temperature distri-
bution at steady state can be determined with this model. The catalyst PSD is represented
by a few nodes using QMOM. Combining CRE and DQMOM, the final polymer PSD can be
predicted with higher accuracy. Then a 3D simulation is conducted from this steady state
and segregation and hot spots in the fluidized bed are investigated in the CFD simulation.
For future work, the 3D simulation should incorporate the population balance to investigate
aggregation and breakage of polymer particles. In a later stage, the electrical force component

will also be incorporated into the multi-fluid model to determine the effect of particle charging
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Figure 6.32 The number of particles for each node at 15 s, a: first node b:
second node ¢: third node.

on the particle size distribution and overheating. After the work on validation of pilot-scale

PE polymerization reactor, the validation on the commercial fluidized bed will be undertaken.
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Figure 6.33 Average particle temperature rise profile at 15 s.
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CHAPTER 7. Conclusion and Future Work

Gas-phase reactors are widely used in the polymerization industry due to their superior
heat- and mass-transfer characteristics. However the detailed mathematical modeling of poly-
merization FB reactors is very complex and poses many challenges for us. In this work, a CFD
algorithm for simulation of FB polymerization reactors is described. In order to rigorously
account for the particle related phenomena, such as aggregation, breakage and growth, PBE
. must be solved along with other equations to describe the distribution of particle size in the
bed. A novel approach - DQMOM is applied to polydisperse fluidized bed to solve PBE efli-
ciently and effectively. DQMOM is an extension of QMOM, and also based on the solution of
the PBE through its moments. However, compared to QMOM, each node has its own velocity,
make it easily to implement into multi-phase CFD code. The DQMOM-Multi-Fluid model
is developed by applying moment approach to the PBE for multi-fluid phase. For simplicity,
the model is tested in a cold bed without chemical reaction, and the I’PSD change only due to
aggregation and breakage. Simulation results show that the DQMOM-multi-fiuid model is an
effective approach to represent the evolution of the PSD due to aggregation and breakage in
FB reactors. Constant aggregation and breakage kernel and the kernel developed from kinetic
theory are implemented. Results show that the model predictions are very similar results for
N = 2—4, however, for some cases, using three or four nodes produced similar results which are
different than those found in two nodes. Considering the computational time increased with
more nodes used, three nodes appears to be a good choice for representing FB reactors. The
effect of the success factor for aggregation was also investigated for the kinetic theory kernel,
a high success factor for aggregation leads to a shorter time for reaching defluidization. The

effect of fragment distribution function is also studied. The results show that erosion causes a
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delay in the dynamic response of the mean particle size compared to symmetric fragmentation.
Erosion is a less effective breakage mechanism in the presence of aggregation.

After successfully developed the multi-Buid CFD model for polydisperse gas-solid flow, the
next step is to valid the multi-fluid model with available experiments and simulation results
to describe the mixing and segregation behavior in the gas-phase reactor. The multi-fluid
model for polydisperse fluidized beds was studied for a binary system and a few systems
with continuous PSD. The CFD simulations for the binary system are compared with the
experiments conducted by Goldschmidt et al. (2003) for glass beads, the simulation resulis
agree satisfactorily with the experimental data. At high gas velocity, the fluidized bed is fully
fluidized so that excellent mixing is achieved and the segregation rate is low,. around 0.1. In an
intermediate gas-velocity range, transient fluidization takes place where in the bed is initially
uniformly fluidized and then segregation gradually occurs. In the end, the large particles go
to the bottom and the small particles move to the top so that there is a defluidized bottom
rich in jetsam and a top layer rich in flotsam. The relative segregation rate is also much higher
(usually around 0.3-0.4).

With the good agreement between simulation and experimental data for binary systems,
segregation phenomena in gas-solid fluidized beds with a continuous PSD are investigated. For
this study, the simulation results are compared with the discrete-particle simulations of Dahl
and Hrenya (2005). Using the moments of the PSD from the discrete-particle simulations,
the weights and abscissas (or nodes) used in DQMOM are initialized in the multi-fluid model.
The segregation rate and the local moments of the PSD predicted by the multi-fluid model are
compared to the discrete-particle simulations. Four systems are choose to do the comparison.
The first three systems had a Gaussian distribution. System 1 had a wide distribution with
0 /dave = 0.3 and System 2 has the same distribution as System 1 but with a higher superficial
gas velocity. System 3 had a narrow distribution with o /dgye = 0.1. The last system (System 4)
had a log-normal distribution with ¢/d,ye = 0.5. As expected, the wide Gaussian distribution
showed more segregation than the narrow one, and the lognormal distribution showed the

greatest segregation. Increasing superficial gas velocity generated more bubbles, better mixing,
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and reduced the segregation. The results showed that the multi-fluid model can reproduce the
segregation along the bed height, but can not reproduce the lateral segregation across the bed
observed in DPS simulations. The effect of the node numbers was also studied. The results
showed that, when the distribution was narrow or the superficial gas velocity was high, the
mixing dominated the segregation, and less nodes were needed. For a wide distribution with
strong segregation, at least three nodes were needed to represent the underling distribution.
After the model development and validation for the polydisperse gas-solid flow, CFD valida-
tion of a PE pilot-scale gas-phase reactor is undertaken. 2D and 3D simulations are conducted
for a pilot-scale fluidized bed to valid the fluid dynamics. The simulations results for bed
height, pressure drop along the two pressure tap and pressure fluctuation signal are compared
with available experimental data. Significant differences are observed between 2D and 3D sim-
ulations. The results shows that, for an industrial-scale fluidized bed, only 3D simulations are
able to match the statics (bed height and pressure drop) and the dynamics {pressure power
spectra) properties of the bed because of the natural three dimensionality of the flow. The 3D
simulations agree fairly well with experiment data on the bubble frequency and can describe
the dynamic movement of the particles in the fluidized bed. For the next step, the polymer-
ization reaction, heat/mass transfer model are developed for PE pilot-scale fluidized bed. The
residence time for a PE pilot reaction is on the order of hours, and the fluid dynamics is on
the order of seconds. It is impossible to run a three-dimensional simulation for hours using
current CFD codes. Due to the different time scale between reaction and fluid dynamics, a
CRE model based on the age of particles is used to initialize the fluidized bed to a steady state,
which has a presumed distribution of pafticle size, age and temperature. The catalyst PSD
is represented by a few nodes using QMOM. Combining CRE and QMOM, the final polymer
PSD can be predicted with higher accuracy. Then a 3D simulation is conducted to investigate
segregation and hot spots in the bed. Results shows there is not much segregation in the main
reaction area, and the temperature profile in the fluidized bed is almost uniform. However
most segregation appear in the expansion area and dome area. Small particle are dominated

in this area and since small particles have high temperature, hot spots are observed in this
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area.

For the future work, the CFD model for polydisperse reacting gas-solid flow with aggre-
gation and breakage has been successfully developed, but need to be validated with available
experimental data. Currently, a constant aggregation and breakage kernel and the kernel from
kinetic theory are tested, the kernel depend on particle temperature need to be developed and
tested. For the work on CFD validation of a PE pilot-scale fluidized bed, the 3D simulation
should also incorporate the population balance to investigate aggregation and breakage of poly-
mer particles. In a later stage, the electrical force component will also be incorporated into the
multi-fluid model to determine the effect of particle charging on the particle size distribution
and overheating. After the work on validation of pilot-scale PE polymerization reactor, the

work will be extended to commercial fluidized bed to study the scale-up.
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APPENDIX Matlab codes used in Chapter 6

Calculate the lengths and weights of a PSD using PD algorithm. (quad.m)

T R R T RN

% Subroutine to calculate the lengths and weights of a PSD using PD algorithm. %
% Input: First n moments: m %
% Number of nodes: n/2 %
% Output: Length of each node: a{n/2) %
%4 Weight of each node: w{n/2) %

A A e A L A LU R R A R T W
function [a,w]=quad(m,n)
p{1,1)= 1.0;
for i=2:n+1
p(i,1)=0.0;
end
for i=1:n
pli,2)=(-1)"(i-1)*m(i);
end
for j=3:n+1
for i=1:n+2-j
p{i,3)=p(1,j-1)*p(i+1,j-2)-p(1,j-2y*p(i+ti,j-1);
end
end
alfa{1)=0.0;
for i=2:n
if p(1,iY#p(1,i-1)>0.0
alfali)=p(1,i+1)/(p(1,i)»p(1,i=1));
else
alfa(i)=0.0;
and

end
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for i=1:n/2.
z(i,i)=alfa(2*i)+alfa(2*xi-1);
end
for i=1:n/2.-1.
z(i,i+t1) = -(abs(alfa(2*i+1)*alfa(2%i)))~0.5;
z(i+1,i) = -(abs(alfa(2*i+1)*alfa(2*i)))"0.5;
end

[autovettori,autovaloril=eig(z)};

for i=i:n/2.
w(i)=autovettori(l,i) " 2*m(1);

end

for i=1:n/2.
a(i)=antovalorifi,i);

end

Two site model fitting. [drive_fitting.m, objfunc.m, odefunc.m]

T L e A R R etk S A A
% Main program for two site model fitting, drive_fitting.m %
T A Tt A L KRR AT AU AN AL A
clear all

close all

cle

format long

% Load experiment data experiment_hh, the first element is time t{min), and the
% second, third, forth elements are the reaction rate at low, middle and high

% temperatura, then put them inte t_matrix and y_matrix.

load experiment_c.dat; t=experiment_c(:,1}/60.0;
yl=experiment_c(:,2)}; y2=experiment_c(:,3)}; y3=experiment_c(:,4);

w=[1,1,11; t_matzix=[t,t,t}; y_matrix=[y1,y2,y3];

% Input: Initial guess for the rate constant and activation energy for site 1 and 2
% Site 1: keO(i)=k.i, ke0(2)=k_d, ke0(3)=k_p,

% ke0(4)=delta_E_i, keO({5)=delta E_d, ke0(6€)=delta E_p

% Site 2: keO(7)=k_i, keO(8)=k_d, ke0(8)=k_p,

% keQ(10)=delta E_i, ke0(1i)=delta E_d, ke0(12)=delta_E_p

ke0={1;
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% Output: Return the final value for ke and resmorm (squared 2-norm of the residual)

% using toolbox-lsqcurvefit

[ka,resnorm,residual,axitflag]=lsqcurvefit(@objfunc,keO,t_matrix,y_matrix);
ke

resnorm;

T AR L L L L VAT A
% Plot three fitting curves and compared with experimental data %

A A A A A T R L Y v

% Input data

% tspan: time,

% C and a: constants, explained in Chapter 6

% d0:initial catalyst diameter

% eps0 and e0:initial solid void fraction and initial concentration
% pgm: effect of pressure

% DeA: effective diffusivity

-

T1 T2 T3: low, middle and high temperature
tspan=t_matrix(:,1}; C=; a=; d0=; eps0=(d0)~3.0%pi/6.0*C;

c0=(d0) "3.0%pi/6.0; pgm=; DeA=; Tl=; T2=; T3=;

=T

Initial value for yO_1[9], y0_2[9], y0_3[9] at low, middle and high temperatura

% The nine elements are:

-~

ipitial value for solid veid fraction, initial value for potential

-2

active site, active site, dead site for site 1(multiply by solid veid

-~

fraction), initial value for potential active site, active site,

=z

dead site for site 2 (multiply by solid fractiom), initial value for
%
%

mass fraction of monomer in solid phase (multiply by solid fractiom),

initial value for solid temperature.

¥O_1=[(d0)~3.0%pi/6.0+C, (d0) “3.0%pi/6.0,0.0,0.0,{d0) "3.04pi/6.0,0.0,0.0,0.0,T1];
¥0_2=[{d0)3.0%pi/6.0+C, (d0)"3.0%pi/6.0,0.0,0.0, (40) ~3.0%pi/6.0,0.0,0.0,0.0,T2] ;
Y0_3=[(d0) "3.0%pi/6.0%C, (d0)~3.0%pi/6.0,0.0,0.0, (d0)"3.0%pi/6.0,0.0,0.0,0.0,T3];

% Use ODE solver to solve reaction engineering model at differemt temperatures

options=odeset(’RelTol’,1.0e-6, *AbsTol’, 1.0e-8)
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[x,y_T1_fl=odelSa(@odefunc,tspan,y0_1,options,ke, T1) ;
[x,y_T2_fl=odel5s(Qodefunc, tspan,y0_2,options,ke, T2) ;

[x,y_T3_fl=odel5s{Qodefunc,tspan,y0_3,options,ke, T3) ;

R AR LA A
% Calculate isothermal effectiveness-factor for site 1 and 2 and then ¥
% calculate the reaction rate from Reaction Engineering Model %

T A o A L A A A A R A A A

% Low temperature

small_number=1.0e-20;

dia Ti=((y_Ti_£(:,1)/C)#6.0/pi)."(1.0/3.0);
phil Ti=arpgms(dia_T1/2.0).*sqrt(exp(ke(3})*exp(ke(6)*1000./...

(1.9872+y _T1_£(:,9)}).*abs({Cxy_Ti_1£{:,3)./y_Ti.£(:,1})}/DeA+small_number);
etal _T1=3.0%(phil_Ti.*coth(phii T1}-1)./{phil_Ti_*phii_T1};
phi2 Tl=a*pgm*(dia_T1/2.0).*sqrt(exp(ie{8))*exp(ke(12)%1000./. ..

(1.9872%y _T1_£(:,9))).+abs({(Cky_Ti_£(:,6)./y_T1_£(:,1))}/DeA+small_number);
eta2_T1=3.0%(phi2 T1.*coth(phi2_T1)-1)./{phi2 T1.*phi2_Ti);
RC2_T1_f=(pgm/c0)*(axp(ke(3))*exp ke (6)*1000./(1.9872¢y _T1_£(:,9))) .»(y_T1_£(:,3))/60.0+...

exp(ke (9) }*exp(ke(12)*1000./(1.9872*y_T1_£(:,9))) .*(y TL_£(:,6))/60.0);

% Middle temperature

dia_T2=((y_T2_£(:,1)/C)*6.0/pi).~(1.0/3.0);
phil_T2=a*pgm*(dia_T2/2.0) .*sqrt(exp(ke(3))*axp(ke(6)*1000./. ..

(1.9872%y_T2_£(:,9))) .*abs{(C*y_T2_£(:,3)./y_T2_£(:,1})) /DeA+small_number);
etal_T2=3.0%(phil_T2.*coth(phil_T2)-1)./(phil_T2.*phii_T2);
phi2_T2=a*pgm*{dia_T2/2.0).*sqrt{exp(ke(9))*exp(ke(12)%1000./...

(1.9872%y_T2_£(:,9))) .*abs((Cxy_T2_£(:,6)./y_T2_£(:,1))) /DeA+small_number);
eta?_T2=3.0+(phi2_T2.*coth(phi2_T2)-1)./(phi2_T2.*phi2_T2);
RC2_T2_f=(pgm/cQ)*(exp(ke(3))*exp(ke{B)*1000./(1.5872%y_T2_£(:,93)) . %(y_T2_£(:,3))/60.0+...

oxp (ke (9) ) *exp(ke(12)*1000./(1.9872+y_T2_£(:,9))) .*(y_T2_£(:,6))/60.0);

% High temperature

dia_T3=((y_T3_£f(:,1)/C)*6.0/pi).~(1.0/3.0);

phil_T3=aspgm*{dia_T3/2.0).*sqrt(exp(ke(3))*exp(ke(6)*1000./. ..
(1.9872ky_T3_£(:,9))).#abs{(Cxy_T3_£(:,3)./y_T3_£(:,1)))/DeAtsmall_number);
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atal T3=3.0x(phii_T3.*coth(phil_T3)-1)./{phii_T3.*phil_T3);
phi2_T3=aspgu« (dia.T3/2.0) . *#sqrt (exp(ke(9)) xexp(ke(12)*1000./. ..
(1.9872%y_T3_£(:,8))).*abs ((Cry_T3_£(:,6)./y_T3_£(:,1)))/DeA+small_number) ;
eta2_T3=3.0*{phi2_T3.*coth{phi2_T3)-1}./(phi2_T3.*phi2_T3);
RC2_T3_f=(pgm/c0}*{exp (ke (3))*exp(ke{6)*1000./(1.9872%y_T3_£(:,9)) . #(y_T3_£(:,3))/60.0+...
exp(ko(9) )*exp(ke (12)*1000./(1.9872+y_T3_£(:,9))) .*(y_T3_£(:,8))/60.0);

% plot the fittimg curves from REM and compared with experimental data

figure

plot(t,yL(:), x?,t,y20:), %% ,¢£,y3(:},’+")

hold on
plot(x,RCZ_Ti_f,’-’,x,RC2,T2_f,’“-’,x,RCZ_TS_f,’—.’,’1inewidth’,2.5);

xlabel(’Time’)}; ylabel{’Reaction rate’);
% Calculate R value

3(1)=sum{{y1~-RC2_T1_£}.-2); a(2)=sum{{(y2-RC2_T2_1)}."2);
8(3)=sum((y3-RC2_T3_f}."2);

q(1)=sum{ (RC2_T1_f-mean(RC2_T1_£))."2);

q(2)=sum( (RC2_T2_f-mean(RC2_T2_£))."2);

a(3)=sun( (RC2_T3_f-mean(RC2_T3_£))."2) ; Mesum(v.*q); J=sum(w.*s);
R=(M-J)/M

T L A R A
% Subroutine J=objfunc(ke, t_matirx, y_matrix) %
B o A L R L A L U,

function J=objfunc(ke,t_matrix,y_matrix)

=2

Input data

% tspan: time

% C and a: ¢onstants, explained in the thesis

% @0:initial catalyst diameter

% eps0 and c0:initial solid void fraction and initial concentration
% pgm: effect of pressure

% DeA: effective diffusivity

% T1 T2 T3: low middle and high temperature

tspan=t_matrix(:,1}; C=;a=;d0=; eps0=(d0)"3.0*pi/6.0*C;

c0={(d0) "3.0%pi/6.0; pgm=; DeA=; Tl=;T2=;T3=;
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-

Input data

=2

initial value for y0_1[9], y0_2[9], y0_3[9] at low, middle and high temperature
% The nine elements are:
% initial value for solid veid fraction, imitial value for potential active site,

% active site, dead sits for site 1(multiply by solid void fractiom),

==

initial value for potential active site, active site, dead site for site 2

==

(multiply by solid fraction), initial value for mass fraction of monomer in solid phase

=

(multiply by solid fraction), initial value for solid temperature.

y0_1=[(d0}~3.0*pi/6.0*C, (d0)~3.0%pi/6.0,0.0,0.0,(30)"3.0%pi/6.0,0.0,0.0,0.0,T1];
¥0_2=[(d0)~3.0%pi/6.0%C, (d0)~3.0%pi/6.0,0.0,0.0,{(d0)"3.0%pi/6.0,0.0,0.0,0.0,T2);
¥0_3=[(d0)"3.0%pi/6.0%C, {d0)"3.0%pi/6.0,0.0,0.0, (40} ~3.0%pi/6.0,0.0,0.0,0.0,T3];

% Use ODE solver te solve reaction enginsering model at different temperatures

options=odeset(’RelTol’,1.0e-6, 'AbsTol’,1,0e~8")
[x,y_Til=odel5s(@odefunc,tspan,y0_1i,options,ke,T1) ;
[x,y_T2]}=odelbs(@odefunc,tspan,y0_2,options,ke,T2) ;

[x,y.T3}=0delSs (Qodefunc,tspan,y0_3,options, ke, T3} ;

Ycalculate isothermal effectiveness-factor for site 1 and 2 and then calculate the

Yreaction rate from Reaction Engineering Model

% Low temperature

small_number=1.0e~-20;

dia_T1=((y_T1(:,1}/C)*6.0/pi}. (1.0/3.0};

phil_Tl=a*pgm*(dia_T1/2.0).#*sqrt(exp(ke(3))*exp(ke(6)*1000./. ..
(1.9872%y_T1(:,9))) .*abs((C+y _T1(:,3)./y_.T1(:,1)))/Deh+small_number);

etal T1=3.0*(phil_T1.*coth{phil Ti)-1)./(phil_T1i.*phil_Ti);

phi2_Ti=a*pgm*{dia_T1/2.0).*sqrt (exp(ke(9))*exp (ke (12} *1000./, ..
(1.9872¢y_T1(:,9))) . *abs((C»y_T1{:,6)./y_T1(:,1)))/DeA+small_number);

otal_T1=3.0* (phi2_T1.*coth(phi2_T1)-1}./(phi2_T1.*phi2_T1);

RC2_T1=(pgm/c0}*{exp (ke (3}) xexp (ke (6)*1000./(1.9872*+y_T1(:,9})}.*(y_T1(:,3))/60.0+...
exp (ke (9) y*xexp (ke (12)*1000./(1.9872+y_T1(:,9))).*(y_T1(:,6))/60.0);

% Middle temperature

dia_T2=((y_T2(:,1)/C)*6.0/pi).~(1.0/3.0);
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phil T2=a*pgm*{(dia_T2/2.0) .*sqrt{exp(ke(3))*exp(ke(6)}*1000./. ..
(1.9872+y_T2(:,9))) . *abs ((C*y_T2(:,3)./y_T2(:,1)})) /DeA+small_number};
etal_T2=3.0%(phii_T2.*coth(phil T2)-1)./(phii_T2.*phil_T2);
phi2_T2=a*pgm#(dia_T2/2.0).*sqrt{exp(le(9))*exp(ke(12)*1000./. ..
(1.9872%y_T2(:,5))).*abs{{C*y_T2(:,6)./y_T2(:,1)))/DeA+small _number) ;
eta2_T2=3.0%(phi2_T2.%coth(phi2_T2)-1)./(phi2_T2.*phi2_T2);
RC2_T2={pgm/c0)*(exp{ke (3) ) *axp(ke (6)*1000./(1.9872*y_T2(:,9))) .*(y_T2(:,3))/60.0+..,
exp(ke(9))*exp(ke (12)*1000./(1.9872%y_T2(:,9}}) .»(y_T2(:,6))/60.0);

% High temperature

dia_T3=((y_T3(:,1)/C)*6.0/pi)}. (1.0/3.0);

phil_T3=axpgm*(dia_T3/2.0).*sqrt(exp(ke(3))*exp(kae(6)*1000./...
(1.9872%y_T3(:,9))) . *abs((C+y_T3(:,3)./y_T3(:,1)))/Dek+small_number) ;

etal T3=3.0*(phil_T3.*coth(phil_T3)-1}./(phil_T3.#phil T3);

phi2_T3=axpgm*{dia_T3/2.0}.*s5qrt (exp{ke(9))*exp ke (12)*1000./...
(1.9872%y_T3(:,9))).+abs((C*y_T3(:,6)./y_T3(:,1)))/DeA+small_number);

eta2_T3=3.0%(phi2_T3.*coth(phid_T3)-1)./(phi2_T3.*phi2_T3);

RC2_T3=(pgm/c0)* (exp (ke (3) ) *exp(ka(6)*1000./{1.9872%y_T3(:,9))).*{y_T3(:,3))/60.0+...
exp (ke (9) I *oxp (ke (12} *1000./(1.9872%y_T3(:,9))) . *(y_T3(:,6))/60.0);

% Return the reaction rates calculate from reaction engineering model

% at different temperatures using the current ke.

J=[RC2_T1,RC2_T2, RC2_T3];

R A A L o A AL A K i
% Subroutine dydx=odefunc(t, y, ke, Tem)} %
T e A A L AR K A L L AR

function dydx=ogdefunc(t,y,ke,Tem)

% Assign the rate constant and active energy.

k11=ke(1); k21=ke(2); k31=ke(3); deltaEli=ke{4); deltaE21=ke(5);
deltaB31=ke(6); ki2=ke(7); k22=ke(8); k32=ke(9); deltaEi2=ka(10);
deltaE22=ke(11); deltaE32=ke(12);

% Input variables:

% € and a; Constants, explained in the thesis
% pgm: Effect of pressure

% Db: Monomer bulk diffusivity

% DeA: Effective diffusivity
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% Cg: Monomer concentration in the gas phase
% rho_s: Polymer density

% Cp: Hoat capacity of polymer

% Hr: Heat release of polymerization reaction
% lam_f: Thermal conductivity

% Sh: Sherwood number

% Nu: Nusselt number

-

dia: Particle diameter calculated from solid void fraction

a=; C= ; pgm=; Db=; DeA=; Cg=; rhos=;
Cp=; Hr=; lam_f=; sh=; Nu=;
dia={(y(1)/C)*6.0/pi) ~(1.0/3.0);

% Calculate isothermal effectiveness-factor for site 1 and site 2

small_number=1.0e-20;

phil=a*(dia/2.0)*sqrt(exp(i31) *exp (deltaE31*1000/(1.9872*y(9)) ) *pgm* (abs (C*y(3) /y (1))} /Ded+small_number) ;
if (phil>=1.0e-6)

etal=3.0%(phitxcoth{phil)-1}/(phii*phii);
alse

etal=1.0;

end

phi2=a*(dia/2.0)*sqrt (exp (k32) xexp(deltaE32%1000/(1.9872%y(9)) ) ¥pgu+ {abs (Cxy (6} /y(1))) /DeA+small_number) ;
if (phi2>=1.0e-6)

eta2=3.0%(phi2*coth(phi2)-1)/(phi2*phi2);
alsge

eta2=1.0;

and

% Solid woid fraction

dydx1=(2.0sDbxsh/dia)*(6.0/dia)* (Cgry (1) -y (8))#(28.0/rhos)}*3600.0;

% First site: potential active site, active site, dead site

% (multiply by solid void fraction)

dydx2=-exp(kii)*exp(deltaEl1*1000.0/(1.5872xy(9)))*y(2);
dydx3=exp(kil)*exp(deltaE11+1000.0/(1.9872+y(9)})}*y(2). ..
—exp (k21) xexp(deltaE21%1000.0/(1.9872%y(9)) ) »y(3);
dydx4=exp(k21)*exp(deltaE21*1000.0/(1.9872+y(9)) ) +y(3);
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% Second site: potential active site, active site, dead site

% {multiply by seolid void fractiom)

dydxE=-exp(k12)*exp(deltaE12«1000.0/(1.9872+y(9)))*y(5);
dydx6=axp (k12)*exp(deltaE12+1000.0/(1.9872+y(3) ) )*y(5) ...
~exp(k22) *oxp (daltaE22x1000.0/(1.98724y(9) }) *y(6);
dydx7=exp(k22) *exp{deltaE22+1000.0/ (1.9872+y(8)))*y(6);

% Mass transfer (multiply by solid fractien)

dydx8=(2. 0*Db*sh/dia)*(6.0/dia) *(Cgry (1} -y(8))*3600.0...
—a*atal*exp(k3l)*exp(deltab31%1000/ (1.9872#y (9)) ) +pgmey (8) *(Cxy (3) /y(1))...
-axata2*exp(k32)*exp(deltaE32+1000/ (1.9872+y (9)) ) xpgmry (8) *(Cry (6) /y(1));

% Energy balance, change to zero if you don’t want to solve energy equation

dydx9=-(2.0%1lam_£+Nu/dia)*(6.0/dia)*(y(9) ~Tem}*3600.0/ (Cp*rhos) . . .
—axetal*Hr*exp(k31) «exp (deltak31+1000.0/(1.9872+y(9)) )% {C*+y (3) /¥ (1})*(y(8) /y (1) }*pgm/ (Cp#zhos) . . .
~a*etal2+Hrrexp(k32) xexp (deltaE32+1000.0/(1.9872%y (9)) )+ (Cxy(6) /y (1)) *(y (8) /y{1) ) *pgm/ (Cpxrhos) ;

dydx=[dydxl;dydx2;dydx3;dydx4; dydx5 ; dydx6 ;dydx7 ; dydx8; dydx9] ;

Calculate moments of the PSD of initial catalyst and final

polymer.[drive_moments.m, odefunc.m, quad.m]

B R T e
% Main program for calculate moments of the PSD of initial¥,
% catalyst and final polymer %
T T e A A e A A A

clear all
close all
clc

format long

% Load PSD of catalyst and polymer

load catalyst.txt; L=catalyst{:,1); f=catalyst(:,2};
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load polymer.txt; L_p=pelymer(:,1); f_p=polymer{:,2);

% Plot particle size distribution of catalyst

plot{L*10000,f); ylabel(’f(L)’); xlabel(’Particle size L’)

% Calculate the first six moments of catalyst PSD

m_0_i=trapz(L, £);
m_0=m_0_1/m_0_1;

m_i=trapz{L, (£.*L}}/m_0_1;

e _2=trapz(L, (f.*L."2})/m_0_1;
m_3=trapz(L, (f.*L."3))/m.0_1;
&_4=trapz{L, (f.*L."4))/m_0_1;
m_b=trapz{L, (£.*L."5))/m_0_1;
sigma=sqrt(m_2-m_1#*m_1);
d43=m_4/m_3;

d32=m_3/m_2;
d30=(m_3/m_0)~(1/3);

% Calculate the probability of catalyst and final polymer

t=cumtrapz(f);

t_p=cumtrapz (f_p};

% Plot the normal probability plot of catalyst and final polymer

figure plot(L*10000,t,’x=', linewidth?,2.0};
ylabel(’Probability’}; xlabel(’Particle size L’);
grid on

hold on

plot(L_p*10000,t_p,*g-’,’linewidth’,2.0);

% Use PD algorithm to calculate the length and weights of each node to
% represent the catalyst PSD.

% the example use three nodes,

m(1)=m_0; m(2)=m_1; w(3)=m_2; m(4)=m_3; m(5)=m_4; m(6)=m_5;

n=6; [d¢,w]=quad(m,n) ;
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% Plot the normal probability plot of catalyst calculated from QMOM

wi_new{1)=0; wi_new(2)=w(1); wi_new(3)=w{(2); wil_new(4)=w(3);
di_new(1)=0; di_new(2)=d(1); di_new(3)=d(2); di_new(4)=d(3);
ti=cumtrapz(wi_new+100);

plot (d1i_newx10000, t1, *‘diamond’)

e

Input data,

% tau: Final integration time, usually it is 10 times of average residemce time, tau_ave
% C:iconstant, explained in thesis

% ke: Rate comnstants and active energy from three curve fitting for sach

% case

% T2: Operation temperature

% n: Number of nodes

% a0(n): Initial catalyst diameter for each node

% omega{n}: Weights for each node for the initial catalyst PSD

% tau_ave: Average residence time

tau=; tspan=0:0.01:tau; C=; ke=[]; T2=;
omega_1=w(1);omega_2=w(2);omega_3=w(3};

omega=[omega_l;omaga_2;omega_3];

% Apply chemical reaction engineering model on each mode

% First node

do(1)=d(1);
y0_1=£(d0(1))"3.0%pi/6.0*C, (d0(1}) ~3.0%pi/6.0,0.0,0.0,(d0(1}}"3.0%pi/6.0,0.0,0.0,0.0,T2];
opticns=odeset{’RelTol’,1.08-6, ’AbsTol’, 1.0e-8)

[x,y1_T2_fl=odeibs(Qodefunc,tspan,y0_1,cptions,ke, T2) ;

% second node

d0(2)=d(2);
y0_2=[(d0(2))"3.0*pi/6.0*C,(d0(2))‘3.0*pi/5.0,0.0,0.0,(d0(2))'3.0*pi/6.0,0.0,0.0,0.0,TZ];
options=odeset{’RelTol’,1.0e-6, ’AbsTol’, 1.0e-8)

[x,y2_T2_f]=od9155(@o&efunc,tspan,yO_Z,options,ke, ) ;

% Third node
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d0(3)=d(3);
y0.3={(a0(3)3~3.0%pi/6.0%C, (d0(3))"3.0*pi/6.0,0.0,0.0,(d0(3)}"3.0%pi/6.0,0.0,0.0,0.0,T2];
options=odeset(’RalTol’,1.0e-6, *AbsTcl?, 1.0e-8)

[x,y3_T2_f]=odelbs(Qodefunc,tspan,y0_3,options,ka, T2} ;

% Integrate three curves (length change over the time) over the tspan, and

% then multiple by the weights for each node and get the final polymer’s moments, m.
tau_ave=4.3;

m_0_1i=trapz(x, (1/tau_ave) .*exp(—x/tau_ave});
m_0_§=trapz(x,(1/tau_ave).*exp(-x/tau_ave));

m.0_3=trapz(x, (1/tau_ave) .*exp(-x/tau_ave});

m_1_i=trapz{x,(6.%yl_T2_£(:,1)/{(pi*C)). (1/3)*(10000/tau_ave) .*exp{-x/tau_ave)};
m_1_2=trap2(x,(6.*y2_T2_f(:.1)/(pi*C))."(1/3)*(10000/tau_ave).*exp(—x/tau_ave));

m_1_3=trapz(x, (6.*y3_T2_£(:,1}/{pi*C))."(1/3)*(10000/tau_ave) .*exp{-x/tan_ave)};

m_2_1=trapz(x, ((6.%yi_T2_£(:,1}/(pi*C)) .~ (1/3)*10000) . (2.0)%(1.0/tau_ave) .*exp(-x/tau_ava));
m_2_2=trapz(x, ({6.*y2_T2.£(:,1}/(pi*C))."(1/3)*10000).~(2.0)*(1.0/tau_ave) .*exp(-x/tau_ave));

m_2_3=trapz(x, ({6.*y3_T2_£(:,1}/(pi*C)}, (1/3)*10000)."(2.0)*(1.0/tau_ave) . *exp(-x/tav_avae));

m_3_l=trapz(x, ({6.+y1_T2_f(:,1)/(pi*C)}.~(1/3)*10000) .~ (3.0)*(1.0/tau_ave)}.*exp(-x/tau_ave));
m_3_2=trapz(x, ({6.%y2_T2_£(:,1}/(pi*C)}.~(1/3)%10000). (3.0 *(1.0/tau_ave) . *exp(-x/tau_ave));

n_3_3=trapz(x, ({6.*y3_T2_£(:,1}/(pi*C)}." (1/3)*10000) . (3.0)*{1.0/tau_ave) . *exp(-x/tau_ave));

m_4_i=trapz(x,{{(6.%yl T2 £(:,1)/(pi*C}}. (1/3)*10000)."(4.0)*{1.0/tau_ave) . *exp(-x/tau_ave)};
m_4_2=trapz(x, ((6.*y2_T2_£(:,1)/(pi*C}).~(1/3}*10000) .~ (4.0)*(1.0/tau_ave) .*exp(-x/tau_ave)};

m_4_3=trapz(x, ((6.*y3_T2_£{:,1)/(pi*C}) .~ (1/3}*10000) .~ (4.0)*{1.0/bau_ave) .*exp(-x/tau_ave)};
m_5_1=trapz{(x, ((6.*yl_T2_£(:,1)/(pi*C)) .~ (1/3)*10000}."(5.0)*(1.0/tau_ave) .*axp{~x/tau_ave)});
m_5_2=trapz(x, ((6.*y2 T2_£(:,1)/{pi*C)) .~ (1/3)*10000}."(5.0)*(1.0/tau_ave) .kexp(-x/tau_ave));
m_5_3=trapz(x, ((6.*y3_T2_£(:,1)/(pi*C)).~(1/3)*10000}."(5.0)*(1.0/tau_ave).*exp(-x/tau_ave));

% Caleulate the first six moments of the final polymex

m_C=m_0_i*omega_I+m_0_2*omega_ 2+m_0_3*cmega_3;

m_1=(m_i_isomega_l+m_1_2%omega_2+m_1_3*omega_3}/m_0;
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m_2=(m_2_l*omega_l+m_2_2%omega_2+m_2_3*omega_3)/m_0;
m_3=(m_3_1*omega_l+m_3_2*omega_2+m_3_3*omega_3)/m_0;
m_4=(m_4_1*omega_l+m_4_2%omega_2+m_4_3*omega_3)/m_0;

m_5=(m_E_i*omega_l+m_5_2%omega_2+m_5_3+omega_3}/m_0; m_0=m_0/m.0;

% Use PD algoritbhm to calculate the length and weights of each node to
% represent the final polymer PSD.
P polym

% Here we use three nodes.

m(1)=n_0; m(2)=m_1; m(3)=m_2; m{4)=m_3; n(B)=m_4; m(6)=m_5;

n=6; [d_p,v_pl=quad(m,n);

% Plot the normal probability plot of polymer calculated from QMOM

w2_new(1)=0; w2_new(2)=w_p(1); w2_new(3)=w_p(2)}; w2_new(4)=w_p(3);
d2_new(1)=0; d2.new(2)=d_p(1); d2_new(3)=d_p(2); d2_new(4)=d_p(3);
t2=cumtrapz (w2_new*100);

plot (d2_new, t2, ’square’)

hold off

R T A A A Rl KR A

% Plot the graphs for the particle diametar change with age, %

% Particle temperature increase with age %
% Particle temperature increase with particle diameter %
A o L A A Bt AR A A R A,
figure

plot{x,(6.*yl _T2_£(:,1}/(pi*C)).~(1/3)*10000, xr~’, *linewidth’,2);
hold an

plot{x, (6.%y2_T2_£(:,1}/(pi*C)). (1/3)*10000,'b-~?, *linewidth’,2};
hold on

plot(x, (6.*xy3_T2_f(:,1}/(pi*C)).~{1/3)*10000, 'g~.?, *Llinewidth’,2);
xlabel(’Age’); ylabel('L’); axis{[1};

figure

plot(x,y1 T2 f£(:,9)-T2,’r-?,’linewidth’,2};
hold on
plot(x,y2_T2_f(:,9)}-T2, ’b-—?, ’linewidth’,2);
hold on

plot(x,y3_T2_£(:,9)~T2,’g-.?, linewidth’,2);
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xlabel(’Age’};ylabel(’T*);axis({]);

figure
plot((6.%y1_T2_£(:,1)/{pi*C)).~(1/3)*10000,y1_T2_f{:,9)-T2, 'r-’,’1linewidth’,2);
hold on
plot{(6.xy2_T2_£(:,1)/{pi*C)) .~ (1/3)*10000,y2_T2_£(:,8)-T2, *b--? , *linewidth’,2);
hold on

plot ((B.*y3_T2_£(:,4)/(pi*C)) .~ (1/3)410000,y3. T2_£(:,9)-T2,g~. ", Linewidth’,2);
x1label(’L’); ylabek(’T');



